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Abstract 

Vuggy oolitic limestones have been screened previously based on the determination of their cementation exponent (m) 
values. The higher the m values above 2, the higher the percentage of separated vugs. Uniaxial compressive strength of 15 
French vuggy limestones has been characterized using the velocity of sound and some pore-related properties. The work 
resulted in 10 equations that predict compressive strength from velocity of sound, saturation coefficient, cementation 
exponent (m), permeability, and porosity (total, sonic, secondary, matrix, and vug). Practical implications of the present work 
and its limitations have also been discussed. 
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1. Introduction* 

The Many technical and industrial aspects of 
carbonates are related directly or indirectly to their pore 
microstructure, which is complicated in comparison to that 
in the siliclastics (Mazzullo and Chillingarian, 1992). 
Hence, the amount and type of secondary porosity (relative 
to total porosity) and its distribution within the rock exert 
strong control on the usefulness of a carbonate rock as an 
oil reservoir. Applications include production and 
stimulation characteristics of carbonate reservoirs (Jordy, 
1992; Chillingarian et al., 1992; Hendrickson et al., 1992; 
Honarpour et al., 1992; Wardlaw, 1996), salt durability 
(Leary, 1983) and restoration of stone (Ashurst and Dimes, 
1990; Spry, 1982). 

According to Choquette and Pray (1970), limestone’s 
porosity is either (1) primary with pores occurring between 
particles or crystals or within them, or formed by gas 
bubbles and sediment shrinkage (fenestral porosity), and 
as shelter or growth-framework pores (common in reef 
buildups); or (2) secondary porosity (Mazzullo, 2004): 
which is formed by post-depositional dissolution (by 
freshwater and/or aggressive fluids), or fracturing. Thus, 
most of the porosity in limestone reservoirs is of secondary 
origin. Cavernous and associated vuggy porosity present in 
oolitic limestones are dominant in some building stones 
(Honeyborne, 1982; Leary, 1983) and constitute major 
attributes of hydrocarbon production (Newell et al. 1987; 
Mazzulo and Chillingarian, 1996; Yousef and Norman, 
1997; Fox & Albrandt, 2002). 
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 Where sophisticated laboratory tests are rarely 
performed due to high expenses or lack of facilities, there 
is a need to develop simple estimation schemes by which 
different porosity types and quantities are defined. This 
will be of importance for interpretation of geophysical logs 
at the well site (with none or minimum amount of 
laboratory work). The present author (Moh’d, 2007) 
characterized the secondary porosity of some Jordanian 
building limestones using easily measured properties (total 
porosity, water saturation and velocity of sound Vp).  

Unconfined Compressive Strength (UCS), the most 
frequently used strength test for rocks is their ability to 
withstand crushing under direct pressure, as in blocks and 
columns (Fox, 1923) or 'the stress required to break a 
loaded sample that is unconfined at its sides'. (Krynine and 
Judd, 1957). Carrying out the test usually follows ASTM 
designation C-170: Compressive strength of building 
stones and preparation of the test specimens is time 
consuming. Compressive strength can be defined as the 
load per unit area at which a block fails by shear or 
splitting. Test specimens are in the form of cubes or 
cylinders (with preferably 2:1 length to diameter ratio). 
The test is usually carried out on dry or saturated samples 
perpendicular to or parallel to bedding.  

Test results are affected by internal and external 
factors. The former includes mineralogy (especially quartz 
content, cement type, clay minerals) and fabric; the way in 
which the crystals are assembled (Price 1960; Lamar 1967; 
Vutukuri et al. 1974; Dearman 1974 and 1976; Irfan and 
Dearman 1978; Mogilevskaya 1965), size and shape of 
grains (Brace 1961; Skinner 1959; Lamar 1967), density 
and porosity (Attewell and Farmer 1976; Smoradinov et al. 
1970; Hoshino 1974), water content (Ruiz 1966; Feda 
1966; Korkosky and Husale 1968; Duncan 1969;  Parate 
1973; Mogilevskaya 1970; Broch 1974, 1979; Boozer et 
al. 1963; Pugh 1967), temperature (Hawkes and Mellor 
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1970; Mellor and Rainey 1968, 1969; Brighenti 1970), and 
anisotropy (Somerton et al. 1970; Al-Jassar and Hawkins 
1979; Stoney and Dhir 1977; Jovanic 1970). External 
factors are related to the test conditions and include both 
specimen geometry and testing state. These factors include 
specimen geometry (aspect ratio (height/diameter, h/d) and 
size) Hawkes and Mellor, 1970; Vutukuri et al., 1974; 
Obert and Duvall (1967); Bieniawski 1973; Vutukuri et al. 
1974; Hosking and Horino 1986; Hudson and Cook 1970; 
ISRM 1979), core ends and rate of coring in addition to 
capping material and loading rate (Obert et al. 1964; 
Perkins and Green 1970; Houpert 1970). 

In a previous paper (Moh’d, 2008), the amount of vug 
porosity has been estimated in many oolitic limestones 
including 15 samples representing 8 French building 
limestones. The present work aims at investigating how 
the uniaxial compressive strength of these limestones is 
related to velocity of sound, saturation coefficient and 
modified saturation, cementation exponent (m), 
permeability, and the different types of porosity (total, 
sonic, secondary, matrix, vug). 

2. Materials and Methods 

The studied stones along with their salient petrographic 
features have been summarized in Table 1 after 
Honeyborne (1982). As can be seen in this table, most of 
the studied stones are oolitic limestones of dominantly 
Jurassic age. Eight stones with 16 subtypes have been 
covered in this study. 

Table 1. Notes on the studied limestone (modified after 
Honeyborne, 1982). 

Stone name Description 
Sparite / 
micrite 

Sample 
No. 

Savonnieres 
Shelly oolitic limestone, 

average oolite diameter 0.5 
mm 

sparite 6, 7, 8 

Brauvilliers 
Oolitic limestone with 

occasional shell fragments 
sparite 9, 10, 11

Anstrude 
Bathonian, crinoidal oolitic 

limestone 
micrite 

14, 15, 
16 

Massangis 
Oolitic limestone with shell 
fragments and occasional 

nodules of silica and/or pyrite 
micrite 20 

Vilhonneur 
Oolitic limestone, oolites fine-

medium 
sparite 

37, 38, 
39 

Sireuil 
Cenomanian, fine-medium, 
oolitc limestone with quartz 

microfossils 
micrite 40 

Terce 

Callovian, chalky oolitic 
limestone, very fine, 

dominantly microporous with 
occasional macropores. 

micrite 50 

Chauvigny Bathonian, oolitic limestone sparite 53 

The results of compressive strength (on 70 mm cubes), 
porosity, degree of saturation, and sound velocity (Vp) 
tests, which were carried out following the French 
procedures (Mammilan, 1976), were taken from 
Honeyborne (1982).  
Derived properties include: 
Modified saturation: this was obtained by multiplying total 
porosity with degree of saturation. 
Cementation exponent m: this parameter, which is 
positively related to the separated vugs as suggested by 
Lucia (1983), was calculated using Archie formula and 

assuming that water resistivity as 0.005 (Archie, 1952) 
where m= log (0.005/water saturation squared)/log total 
porosity. This parameter can also be estimated from total 
and sonic porosity for fractured (Rasmus, 1983) and vuggy 
carbonates (Nugent, 1983). 

Permeability: was obtained using Jorgensen equation 
(1988) by multiplying 84105 by porosity index = Фm+2/(1-
Ф)2. This number (84105) is the proportionality constant in 
permeability-porosity index equation. The obtained values 
were found to correlate well with measured air 
permeability using API standards. 

Sonic porosity: is equivalent to velocity of sound –
141/(28.59); where 28.59 is the inverse of 100/(3000-141); 
141 and 3000 are transit time (in μ s/m) in calcite crystal 
and air, respectively.  

Vug porosity and Fracture porosity: are estimated from 
the dual porosity chart of Aguilera and Aguilera (2003). 

Matrix porosity is the total porosity minus the sum of 
vug and fracture porosities. 

In summary the cementation exponent m has been 
estimated for each stone type. Then those stones with m 
more than 2 have been considered of vug porosity. After 
that, only oolitic limestones with m more than 2 have been 
dealt with. Oolitic limestones have been identified after 
consulting the description of each stone in Honeyborne 
(1982). 

3. Results 

Properties of vuggy French oolitic limestones taken 
from Honeyborne (1982) are listed in Table 2, and those 
derived by the author using the methods applied in the 
previous section are in Table 3. The different properties 
are correlated in Table 4. A statistical summary is shown 
in Tables 5 and 6. Bivariate plots between unconfined 
compressive strength and other properties are shown in 
Figures 1 to 10. The results of the work are summarized in 
Table 7. The relationship between UCS and each variable 
has been examined by fitting linear, logarithmic, power or 
exponential equations of the Excel program.  The selected 
relationship shown in Table 7 is the one having the best fit 
(maximum correlation coefficient r), on one hand, and 
avoiding negative values of UCS or other variables, on the 
other (when the curve extended). Equations in Table 7 are 
arranged (in descending order) based on correlation 
coefficient r-values.  

The studied oolitic limestones range in their 
compressive strength from 10.4 to 80.2 MPa, thus 
classified according to Deere and Miller (1966) into very 
low strength (< 28 MPa, samples 6, 7, 8, 9, 10, and 40), 
low strength (29-56 MPa, samples 14, 15, 50, 53) and 
medium strength (56-112, samples 20, 38, 39). 

Figure 1 shows that there is an almost perfect (r= 
0.983) positive relationship (power function) between 
compressive strength and dry density. The very strong (r= 
0.91) positive exponential relationship between velocity of 
sound and compressive strength (Figure 2) reveals that the 
latter can be estimated by the non-destructive sonic 
velocity test. There seems to be a critical value of velocity 
at about 4000 m/s above which compressive strength 
increases rapidly. 

 A very strong (r= -0.98) negative exponential 
relationship (Figure 3) occurs between total porosity and 
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compressive strength. Below a critical porosity value of 
about 25%, compressive strength changes quickly. Figure 
4 shows an inverse logarithmic relationship (r= -0.77) 
between modified saturation and compressive strength. 
Below a modified saturation value of 15 compressive 
strength changes rapidly. 

Figure 5 shows an inverse relation (r= -0.89) between 
cementation exponent m value and compressive strength. 
The higher the percentage of separated vugs (expressed by 
higher values of cementation exponent m), the lower the 
compressive strength is. Compressive strength changes 
rapidly below a cementation exponent value of 3. 

Figure 6 shows an inverse relation (r= -0.95) between 
permeability and compressive strength. The latter drops 
quickly when the value of permeability reaches 50-60 md, 
then the rate of strength decrease becomes lower as the 
permeability increases.  

Figure 7 shows an inverse relation (r= -0.91) between 
uniaxial compressive strength and sonic porosity. 
Compressive strength changes quickly below a sonic 
porosity value of about 5%. 

Figure 8 shows an inverse relation (r= -0.96) between 
uniaxial compressive strength and secondary porosity. 
Compressive strength changes rapidly up to a secondary 
porosity value of about 16%. 

Figure 9 shows an inverse relation (r= -0.92) between 
uniaxial compressive strength and vuggy porosity. 
Compressive strength changes rapidly below a vuggy 
porosity value of about 10%. 

Figure 10 shows an inverse linear relation (r= -0.82) 
between uniaxial compressive strength and matrix 
porosity.  

Table 2. Properties of vuggy French oolitic limestones taken from Honeyborne (1982). 

Sample No. 

 

Density 

(g/cm3) 

Compressive 

Strength (MPa)

Sound 

Velocity (m/s)
Porosity (%)

Saturation 

Coefficient (%) 

6 1.721 11.2 2881 36.1 0.52 

7 1.748 11.2 2684 34.7 0.5 

8 1.82 17 2702 30.6 0.68 

9 1.959 23.2 3106 27 0.57 

10 1.826 17.6 2966 32.6 0.54 

11 1.766 11.9 3045 33.7 0.47 

14 2.114 45.6 3376 21.9 0.81 

15 2.14 41.1 3374 20.6 0.66 

16 2.218 58.1 4282 18.1 0.65 

20 2.3 80.2 4276 15.1 0.88 

38 2.392 65 4259 11.7 0.94 

39 2.389 76 4606 11.9 0.64 

40 1.727 10.4 2069 36 0.76 

50 2.061 36.2 3332 23.7 0.88 

53 2.201 38.3 4014 18.7 0.71 

Table 3. Derived properties of vuggy oolitic limestones. 

Sample No. 
 

Modified 
Saturation 

Cementation 
Exponent m 

Permeability 
millidarcies 

Sonic 
Porosity% 

Seconday 
Porosity % 

Vug 
Porosity % 

Matrix 
Porosity % 

6 18.77 3.92 494.61 7.2 28.9 22.5 13.6 

7 17.35 3.7 473.01 8.1 26.6 22 12.7 

8 20.81 3.82 177.42 8.0 22.6 18 12.6 

9 15.39 3.19 176.58 6.3 20.7 17 10 

10 17.6 3.63 336.45 6.9 25.7 19 13.6 

11 15.84 3.48 493.41 6.6 27.2 20 13.7 

14 17.74 3.21 30.8 5.4 16.5 13 8.9 

15 13.6 2.83 64.74 5.4 15.2 10 10.6 

16 11.77 2.6 48.26 3.2 14.9 8.5 9.6 

20 13.29 2.67 17.09 3.3 11.9 10 5.1 

38 11 2.41 8.39 3.3 8.4 4.1 7.6 

39 7.62 2.07 18.72 2.7 9.3 1.25 10.7 

40 27.36 4.65 230.08 12.0 24.0 22.5 13.5 

50 20.86 3.5 52.59 5.6 18.1 14 9.7 

53 13.28 2.75 44.25 3.8 14.9 5.3 13.4 
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Table 4. A correlation matrix between the different properties. 

 Density 
Comp. 

strength 

Sound 

velocity 
Porosity

Saturation

Coef. 

Mod. 

saturation
m Permeability

Sonic 

porosity 

Secondary 

porosity 

Vug 

porosity

Matrix 

porosity

Density 1.00            

Compressive strength 0.96 1.00           

Sound velocity 0.93 0.92 1.00          

Porosity -1.00 -0.95 -0.93 1.00         

Saturation coefficient 0.62 0.61 0.39 -0.62 1.00        

Modified 

saturation 
-0.77 -0.73 -0.88 0.77 -0.01 1.00       

m -0.92 -0.87 -0.96 0.92 -0.28 0.95 1.00      

Permeability -0.86 -0.80 -0.67 0.87 -0.78 0.40 0.65 1.00     

Sonic porosity -0.88 -0.84 -0.97 0.88 -0.31 0.90 0.96 0.61 1.00    

Secondary porosity -0.98 -0.94 -0.86 0.98 -0.69 0.68 0.85 0.91 0.79 1.00   

Vug porosity -0.97 -0.88 -0.92 0.97 -0.51 0.80 0.92 0.82 0.87 0.95 1.00  

Matrix porosity -0.74 -0.82 -0.63 0.74 -0.71 0.44 0.60 0.70 0.62 0.75 0.56 1.00 

 
Table 5. Statistical summary of properties tested by Honeyborne (1982). 

 Density Comp. strength
Sound 

velocity 
Porosity 

Saturation 

coefficient 

Mean 2.03 36.20 3398.13 24.83 0.68 

Standard Error 0.06 6.30 189.76 2.26 0.04 

Standard Deviation 0.25 24.40 734.95 8.75 0.15 

Range 0.67 69.80 2537 24.40 0.47 

Minimum 1.72 10.40 2069 11.70 0.47 

Maximum 2.39 80.20 4606 36.10 0.94 

Count 15 15 15 15 15 

 
Table 6. Statistical summary of derived properties. 

 
Modified 

Saturation 
m Permeability 

Sonic 

porosity 

Secondary 

porosity 

Vug 

porosity 

Matrix 

porosity 

Mean 16.15 3.23 177.76 5.84 18.98 13.81 11.02 

Standard Error 1.24 0.18 47.79 0.64 1.72 1.82 0.67 

Standard Deviation 4.81 0.68 185.08 2.48 6.67 7.04 2.59 

Range 19.74 2.58 486.22 9.31 20.47 21.25 8.6 

Minimum 7.62 2.07 8.39 2.66 8.42 1.25 5.1 

Maximum 27.36 4.65 494.61 11.97 28.89 22.5 13.7 

Count 15 15 15 15 15 15 15 
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Figure 1. Density versus compressive strength. 

 
 

Figure 2. Sound velocity versus compressive strength. 
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Figure 3. Total porosity versus compressive strength. 

Figure 4. Modified saturation versus compressive strength. 

Figure 5. Cementation exponent versus compressive strength. 

Figure 6. Permeability versus compressive strength. 

Figure 7. Sonic porosity versus compressive strength. 

 
 
 
 
 

Figure 8. Secondary porosity versus compressive strength. 
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Figure 9. Vug porosity versus compressive strength. 
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Figure 10. Matrix porosity versus compressive strength. 
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strength and other parameters illustrated in Figures 1 to 10. 

Fig. Equation R2 R 

1 UCS = 0.4182 density (6.0375) 0.9666 +0.9832

2 UCS = 225.35/e (0.0834 porosity) 0.9546 -0.9777

3 UCS = 217.08/e 1.071 (secondary porosity) 0.9162 -0.9572

4 UCS = 299.66/ permeability0.5249 0.8982 -0.9477

5 UCS = 109.18/e0.0974 vuggy porosity 0.8453 -0.9194 
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6 UCS = 1.2211 e0.0009 (sound velocity) 0.8338 +0.9131

7 UCS = 215.51/sonic porosity(1.5899) 0.8292 -0.9106

8 UCS = 656.43/e0.9722 (cementation exponent) 0.7866 -0.8869

9 
UCS = -7.6875 (matrix porosity) – 

120.89 
0.6663 -0.8163

10 
UCS = -60.514 Ln (modified saturation) 

+ 201.95 
0.5906 -0.7685
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4. Discussion of Results 

In almost all the previous cases the best-fit curve 
shown represents approximately the average value of 
compressive strength. Lower and upper envelopes can be 
made by connecting the lowest points below the curve 
(lower envelope) and the highest points above the best fit-
curve (upper envelope). As it is well known that micrite 
imparts higher strength to the rock than sparite, it is 
believed that the upper envelope is related to the highest 
micrite contents, whereas the lower envelop is related to 
highest sparite contents. The upper and lower envelopes 
may also be related to other factors such as mineralogical 
constituents other than carbonates (e.g. silicification), and 
vug-size distribution.  These points were not tackled in the 
present work, but indicated the importance of integrating 
petrographic investigations with any geotechnical study on 
vuggy oolitic limestone. 
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The strong relationship between compressive strength 
and both total porosity and velocity of sound reflects, more 
or less, homogenous nature of the studied samples. This 
idea is further supported by plotting the total porosity (on 
the x-axis) and the sonic velocity (on the y-axis) (Figure 
11). In this case the samples will be aggregated and nicely 
fitted by one straight line (see also Moh’d, 2008). Had the 
studied suite of samples been of heterogeneous nature, it 
would have been plotted in the total porosity- sonic 
velocity graph, as seen in Figure 12 which shows a weak 
inverse relation and high scattering of data. Figure 12, 
which includes 47 UK oolitic limestones, was drawn after 
screening Leary (1982) data. If fitted with one curve, then 
R2 is much lower than that shown in Figure 11. This 
indicates the high complexity of the pore structure of the 
UK oolitic limestones in comparison to that of the French 
stones. Unfortunately, compressive strength of these stones 
was not provided by Leary (1983). 

Figure 11 Porosity versus velocity of sound of the studied 
limestones. 

If the vugs presence is ignored, then an idea about the 
uni- or bimodality of pore space can be gained from the 
degree of saturation values.  The studied suite of rocks has 
a degree of water saturation ranging from 0.47-0.94. 
Limestones, having their pore space in the form of finer 
capillaries, will have high values of water saturation 
(samples 38, 50, 20). This usually occurs in the micro 
pores of the vuggy oolitic limestone. When the degree of 
saturation is less than 0.60, then the pore space is bimodal 
(have 2 capillaries r and R, samples 6, 7, 9, 10, and 11). 
The remaining samples are either of unimodal or slightly 
bimodal pore space (small difference between r and R). 
This can be further checked by plotting porosity against  

Figure 12. Porosity versus velocity of sound of the UK 
ooliticlimestones showing weak inverse relation and high 
scattering of data. 

modified saturation (Bellanger et. al., 1993; Moh’d, 2008). 
As seen in Figure 4, the compressive strength has a 
negative relation with modified saturation. Being 
equivalent to porosity multiplied by saturation, modified 
saturation can be thought of as equivalent to the amount of 
water that the limestone can accommodate in its 
interconnected pore space. This property is referred to as 
‘bulk volume water’ in petrophysics literature. 

The higher the cementation exponent m value above 2, 
the higher the proportion of isolated vugs is, and 
consequently the lower the compressive strength. Vuggy 
porosity has a relationship with compressive strength 
similar to that of cementation exponent since cementation 
exponent is used in deriving vuggy porosity using Aguilera 
and Aguilera (2003) method.  

5. Practical Implications, Limitations and Suggestions  

To estimate the uniaxial compressive strength in the 
case of vuggy oolitic limestone, and when it is difficult to 
have access to sophisticated equipment, the easiest 
parameter to measure is dry density, which can be inverted 
to compressive strength using Figure 1. As a double check, 
total porosity can be measured (or derived from dry 
density) to estimate compressive strength using Figure 2.  

The number of samples included in the present 
database is relatively small. Being collected from one 
region (France), thus possibly reflecting one sedimentary 
basin may be the reason for the homogenous nature of the 
studied samples. Consequently, extending the present 
study to include analyses of larger databases collected 
from different sedimentary basins may be necessary to 
show potential heterogeneities. 
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The suite of rocks studied in this work is predominantly 
of very low-to-low compressive strength. Results from this 
work should not be generalized to strong or very strong 
rocks without further testing. It is believed that the 
compressive strength of the latter types of rocks will be 
more affected by the presence of vugs especially if they 
have a micritic matrix and/or low porosity (e.g. 
Carboniferous limestones of England). As pointed out in 
the discussion section, the reason of the scattering of the 
data points in the different figures may be better 
understood if the physical and engineering properties are 
integrated with a petrographic study. Here factors such as 
micrite and sparite contents, non-calcareous minerals 
(silicification for instance), type of cements and the nature 
of their distribution, oolites size and distribution, and 
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fracture-vug relationships and vug size distribution should 
be emphasized.  

6. Conclusions and Recommendations 

Compressive strength of the studied samples has 
positive relationships with density and sonic velocity and 
inverse relationships with permeability, modified 
saturation, total and other porosity types. This parameter 
can be derived from dry density alone. It can also be 
estimated from the knowledge of porosity types and 

amounts with accuracy decreasing in the following order: 
total porosity, secondary porosity, vuggy porosity, sonic 
porosity and matrix porosity. From a practical point of 
view, dry density, which is the easiest parameter to 
measure, can be used for predicting compressive strength. 
Carrying out a study including vuggy oolitic limestones 
spanning the whole range of strength (very low to 
extremely strong), and integrated with petrographic 
investigations is highly recommended. 
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