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Abstract

1. Introduction
Digital soil-mapping applications which mean spatial 

prediction of soil properties at unobserved locations using 
statistical assumption have increasingly used recently since 
their early development at the beginning of the 19th century. 
The introduction of geostatistics tools permits researchers to 
interpolate the spatial distribution of soil variables (Webster, 
1994). Digital soil mapping (DSM) is one of most the 
modern versions of geostatistical soil mapping, including 
creation of soil spatial information systems using both 
laboratory and field methods combined  with spatial and 
non-spatial soil inference systems (Lagacherie et al., 2007; 
Martı́ nez-Graña et al., 2016). The spatial distribution of soil 
variables is determined by relying on observed samples. 
These surface observed samples data are interpolated to 
predict soil variables in non-sampled areas (Sanchez et 
al., 2009). Traditional methods of soil survey are mostly 
slow, expensive and demanding. Moreover, the current soil 
database is not usually detailed or even accurate enough to 
use soil data efficiently (Malone et al., 2017). The existence 
of soil nutrients is usually one of the most principal indicators 
of soil quality; therefore it has a considerable impact on 

the variability of soil productivity and crop production. 
Various interpolation techniques are used to map the spatial 
distribution of soil properties (Cambardella and Karlen, 
1999). Like Deterministic and stochastic methods (Myers, 
1994). Thiessen, density estimation, inverse-distance-
weighted (IDW) and splines are examples for deterministic 
interpolation methods fitting no assessment of errors. 
Otherwise stochastic interpolation and Kriging methods do 
provide prediction of error assessments.

Kriging is a geostatistical interpolation method with 
confirmed competence for predicting values at non-sampled 
locations based on observed data. The advantages of this 
method are: supplying the best linear unbiased estimates and 
information on the estimation of error distribution;  presenting 
robust statistical characteristics (Wang et al., 2009); reducing 
filed sampling expenses and laboratory analysis, in addition 
to providing appropriate soil information that depicts the 
studied area based on restricted soil samples (Johnson et 
al., 2012). However, the reliability of produced maps of soil 
variables relies on satisfactory sampling data and accuracy 
of spatial interpolation method (Yao et al., 2013).
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Digital soil mapping has been increasingly used to produce statistical models of the relationships between environmental 
variables and soil properties. This study aimed at determining and representing the spatial distribution of the variability in 
soil properties of western face-sloping of Jabal Al-Arab, Suwaydaa governorate. pH, organic matter (OM),  total nitrogen 
(N), phosphorus (P, as P2O5), potassium (K, as K2O), iron (Fe), boron (B) and zinc (Zn) were studied, thus, Forty-five surface 
soil samples (0 to 30 cm) were collected and analyzed. Descriptive statistics demonstrated that most of the measured soil 
variables (except pH, P2O5, and Zn) were skewed and ab-normally distributed, and logarithmic transformation was then 
applied. Kriging was used- as geostatistical tool- in ArcGIS to interpolate observed values for those variables, and the digital 
map layers were produced based on each soil property. Geostatistical interpolation recognized a strong spatial variability for 
pH, P2O5 & Zn, moderate for OM, N, Fe & B, and weak for K2O. Exponential for P2O5, Fe, & Zn, spherical for pH, OM, & 
K2O, and Gaussian for N, and B. Models were fitted to the semivariograms of soil properties. These produced maps permit 
farmers and decision makers to evaluate farm soils, thus allowing them to make easier and more effective management 
decisions in order to maintain sustainable productivity.
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There is a growing tendency to use DSM as a result of 
the latest advances in technology on Geographic Information 
Systems (GIS). For instance, Lopez-Granados et al. (2005) 
used DSM to map soil properties including organic matter 
(OM), soil reaction (pH) and potassium (K) by using Kriging 
method. Santos-France ś et al., (2017a) also used Kriging 
interpolation method for the spatial distribution of heavy 
metals in north Spain’s soils and north Peru (Santos-France ś 
et al., 2017b). Likewise, Zhang et al. (2010) mapped the 
spatial variability for some soil fertility nutrients: nitrogen 
(N), phosphorus (P) and potassium (K) by using Kriging 
method in northeast China.

In spite of the success and wide application of DSM all 
over the world, no single study has tested the use of DSM to 
study the spatial distribution of soil properties in any part 
of Syria. 

In Syria, Fertilizer recommendation is applied as a normal 
procedure, where the soil is usually analyzed by random 
sampling and application of fertilizer recommendation based 
on soil analysis results without taking into consideration the 
spatial distribution of soil nutrients and their variation from 
one place to another. As a result, part of the field may receive 

Figure 1. Study area location to Syria and Suwaydaa Governorate

2. Materials and Methodology
2.1. Site Description

2.2. Soil Sampling and Analysis

The study area lies in the western region of Suwaydaa 
governorate in southern Syria between (32°28’15”N, 
36°24’18”E and 32°46’44”N, 36°45’15”E; Figure 1) and 
covers an area of 523 km2 (52300 hectares). Altitude ranges 
between 696 m in west and 1795 m above sea level in the east 
(Tall Qeni). This area is characterized by the Mediterranean 
wet climate (Csb) in the highest parts with dry and temperate 
summer and semi-arid climate (Bsk) to cold in the low 
areas according to Kopin Classification. The mean annual 
precipitation is between 250-550 mm and more than 80%, 
falling between October and April. Agricultural land use is 
about 83.66 % of study area (AlSafadi, 2016).

 Forty-five surface soil samples (0-30cm) were collected 
during 1-23/4/2016, (Figure 2) and their geographic locations 
were recorded by using Global Positioning System (GPS). 

The collected soil samples were air-dried, ground and sieved 
through a 2mm sieve. The chemical analyses were carried 
out at Suwaydaa Research Center’s laboratory. Organic 

an extreme amount of fertilizers, while the other may suffer 
from shortage, adversely affecting productivity levels. This 
research aims to determine and map the spatial distribution 
of some basic soil fertility variables and micronutrients 
in the western facing-slope of Jabal Al-Arab area in 
Suwaydaa governorate as a preliminary study to be used 
for improving the efficiency of using the approved fertilizer 
recommendation.
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matter was measured by wet combustion method (Nelson 
and Sommers, 1982), pH was determined by using pH-meter 
in 1:2.5 soil water suspension (Jackson, 1973), total N  by 
Kjeldahl (Bremner and Mulvaney, 1982), available P(P2O5) 
was extracted by using sodium bicarbonate (NaHCO3) and 
then measured by spectrophotometer (Olsen et al., 1954), 
available K(K2O) was  extracted by ammonium acetate and 
determined by flame photometry  (Toth and Prince,1949), B  
was estimated by hot water method(Berger and Truog,1939), 
Fe and Zn by DTPA extraction and measured by atomic 
absorption (Lindsay and Norvell, 1978). The measured soil 
properties were categorized (Table 2) based on soil content 
according to (Costantini, 2009; GCSAR, 2013).

For any data distribution, Kriging can give the best-
unbiased predictor of values at non-sampled locations. 
The best estimates of probability maps can be produced as 
data is closer to normal distribution (Tziachris et al., 2017). 
Therefore, before doing geostatistical analysis, normality of 
dataset is vital, due to the high skew and presence of outliers. 
As coefficient of skew was more than 1 (Table1) except for 
pH, OM, and Zn, the logarithmic transformation was carried 
out for Kriging analysis to stabilize the variance (Goovaerts, 
1999).

2.3. Statistical and Geostatistical Analysis

Normality test was conducted after logarithmic 
transformation for soil variables (N, P2O5, K2O, Fe & B). 
The transformed data resulted in slight skew as shown in 
(Table 1).The kriging method uses semivariance to evaluate 
the spatial distribution structure of soil properties (Zandi et 
al., 2011; Wang and Shao, 2013). Semivariogram modeling 

Descriptive statistics of soil variables (pH ,OM, total 
N, available P, available K, Fe, B, and Zn) involving  mean, 
minimum, maximum, standard deviation, coefficient of 
variation, skewness (skew) and kurtosis were calculated 
by SPSS software. In this study, the ordinary Kriging was 
used (also called Kriging). Kriging is a linear geostatistical 
interpolation technique whose theory relies on weighting the 
sums of adjacent sampled concentrations. Additionally, it is a 
development over inverse distance weighting (IDW) because 
prediction estimates in Kriging is less biased and goes along 
with prediction standard errors. The general formula is 
formed as a weighted sum of the data:

and estimation are crucial for structural analysis and 
spatial interpolation (Chen and Guo, 2017). Geostatistical 
parameters were developed, including nugget, structural, 
sill, and range (Wang and Shao, 2013). The study also takes 
into consideration the spatial dependency (sp.D) of selected 
soil variables, i.e. ratio of the nugget to sill variance. If the 

Figure 2. Soil samples locations

Table 1. Summary statistical overview for selected soil properties of study area

Min: minimum, max: maximum, SD: standard deviation, CV: coefficient of variation, skew: skewness. Skew and Kurtosis: skewness and kurtosis obtained from 
original data. Skew (Tr) and Kurtosis (Tr) = skewness and kurtosis obtained from log transformed data.

Soil variable Min Max Mean SD CV% Skew Kurtosis Skew (Tr) Kurtosis (Tr)

pH 6.37 7.39 6.95 0.275 3.96 0.155 1.84 - -

OM % 0.47 1.45 0.99 0.203 20.46 -0.30 2.85 - -

N % 0.03 0.15 0.067 0.029 42.99 1.236 3.87 0.494 2.63

P2O5 (mg/kg) 1.7 94.8 15.91 20.23 127.1 2.11 7.03 0.487 2.48

K2O (mg/kg) 150.3 883.2 440.3 129.1 29.33 1.09 5.87 -0.65 5.65

Fe (mg/kg) 3.5 35.17 14.74 6.96 47.11 1.03 3.81 -0.33 3.4

B (mg/kg) 0.02 0.7 0.18 0.127 70.56 1.96 7.8 -0.36 3.83

Zn (mg/kg) 1.31 7.69 4.02 1.55 38.59 0.289 2.34 - -
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ratio is less than 0.25, then the variance will be strong sp.D, 
whereas the ratio value between 0.25 and 0.75 suggests 
moderate sp.D. However, it will be weak if the ratio is more 
than 0.75 (Orman, 2012). To evaluate the best fit of Kriging 
(spherical, exponential and Gaussian models), two indicators 

were calculated:  mean error (ME) and root mean square 
error (RMSE) since ME value is closer to 0 referring to 
unbiased interpolation method. Likewise, the lowest RMSE 
value implies the best fit to variogram model. 

Table 2. Ranges for selected soil properties (Costantini, 2009; GCSAR, 2013)

Range OM% N% P2O5 mg/kg K2O mg/kg Fe
mg/kg

B
mg/kg

Zn
mg/kg

Very low - 0.05> 0-6.9 0-102 2> 0.2> 0.5>

Low 0.86> 0.05-0.1 6.9-18.4 102-180 2-5 0.2-0.5 0.5-1

Medium 0.86-1.29 0.1-0.2 18.4-32.2 180-300 5-20 0.5-1.2 2-10

High 1.29< 0.2-0.4 32.2-46 300-540 20-50 1.2-2 10-20

Very high - 0.4< 46< 540< 50< 2< 20<

2.4. Data analysis
IBM SPSS software (version 22) was used to carry out the 

normality test and descriptive statistics for the selected soil 
variables. In addition, all maps were developed using ArcMap 
(version 10.3).Spatial and geostatistical analysis tools were 
principally used. The structure of spatial variability was 
examined through semivariogram. Finally, spatial pattern 
distribution was practically identified by using ArcMap and 
its spatial autocorrelation (Moran’s Index) extension.

3. Results and Discussion
3.1. Descriptive statistics for selected soil variables

3.2. Kriging-based digital soil maps

3.2.1 Soil reaction pH

3.2.2. Soil organic matter

3.2.3. Total nitrogen N

The descriptive statistics for selected soil variables: pH, 
OM, total N, available p, available K, Fe, B and Zn are given 
in Table 1. The variance of soil variables was interpreted 
using the coefficient of variance (CV) which was classified 
as: most (CV> 35%) moderate (CV:15 to 35%) and least 
(CV>15%) (Wilding, 1985). CV ranged from 3.96% (in pH) 
to 127.1% (in P2O5). Different degrees of heterogeneity 

It was also observed that some soil properties (N, P2O5, 
K2O, Fe and B) were abnormally distributed due to high 
values of both skew and kurtosis. In order to reduce these 
values, the logarithmic transformation was used as shown 
in Table 1, and the transformed values were then used in 
the spatial analysis. among soil properties were noticed by 
different CV ranges. The pH values ranged from 6.37 to 7.39 
with a mean of 6.95. The soil content of organic matter ranged 
from low (<0.8%) to moderate (0.8 to 1.45%) with a mean 
of 0.99%. The macronutrients (N, P, K) were also described 
in Table 1, showing that total N as very low (0.045-0.05%), 
low (0.05-0.09%) and moderate (0.09-0.15%) with a mean 
of 0.067%. Available P (P2O5) ranged from very low (1.7-10 
mg/kg) to high (55-94.1 mg/kg). Available K (K2O) can be 
described as high (334-500 mg/kg) to very high (500-883.2 
mg/kg) with a mean of 440.3 mg/kg. Three micronutrients 
were also measured (Fe, B, and Zn). The results revealed Fe 
from moderate (7.12-20 mg/kg) to high (20-35) with a mean 
of 14.74 mg/kg. Boron (B) also ranged between very low 

Digital maps of selected soil properties were developed 
by using Kriging method. The results are shown in (Figures 
2 through 9). They were grouped into many classes based 
on Table 2. The estimated area of each class is presented in 
Table 3.

Soil reaction (pH) varied from slight acid (6.1-6.5) in 
1.74% to slight alkaline in 8.01% of the total study area, 
whereas the rest (90.52%) was neutral soil reaction (Table 
3, Figure 3). These results are in agreement with Habib’s 
study (2006), who claimed that slight acid pH reflects the 
nature of soil components leaching soil process, especially 
CaCO3. Though it was reported that it could be an indication 
for further pH decrease in the future. Lulu (1980) reported 
that the majority of soils in the study area tend to be neutral 
(pH: 6.6-7.3) which is favorable for most crops and soil 
management.

The results demonstrated that all the studied lands 
(100%) have low organic matter content (0.8-1.15%). (Table 3 
and Figure 4). The low organic carbon content in soil can be 
generally attributed to lack of organic matter sources in the 
study area and rapid mineralization due to high soil and air 
temperature or low huminification rate (Habib, 2006).

Nitrogen is the most important soil nutrient that affects 
crop growth, quality and yield. The geostatistical results 
showed that more than 91% of the total area had low N content 
(Figure 5) with values (0.05-0.0812%), while that of the 
remained area (8.97%) was very low (<0.05%). These results 
are in agreement with Al-Hinawi (2012). The differences 
in N content in different parts of the study area  are due 
to soil management, and application of organic manures 
and mineral fertilizers to the previous crops.(Sherchan and 

(0.02 -0.2 mg/kg), low (0.2-0.5 mg/kg) and moderate (0.5-0.7 
mg/kg). Finally, the soils of the studied area have moderate 
zinc (Zn) (1.31-7.69 mg/kg) with a mean of 4.02 mg/kg.
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3.2.4. Available phosphorus

3.2.5. Available potassium

3.2.6. Micronutrients Fe, B, and Zn

The available P2O5 varied from very low (2.32-6.9 mg/
kg) with 18.95% to very high (<46 mg/kg) with 0.11 % of 
the total area (Figure 6). However, most soils had low P2O5 
(6.9-18.4 mg/kg) with 60.38% of the area. The low levels 
of available P2O5 may be explained by low organic matter 
content in soils. In contrast, the high levels of available P2O5 
may be due to dissolution of Ca-P under neutral pH (Pal et 
al., 2012). The amount of available P2O5 is affected by soil 
reaction pH, soil content of organic matter, and amount of 
applied phosphorus fertilizer. However, it is lost from soils 
by surface runoff and erosion (Panday et al., 2018).

The majority of soils in the study area had high levels of 
available K2O (300 -540 mg/kg) in 91.39% of the total area 
(Table 3, Figure 7), whereas 8.61% of the area had very high 
K2O (>540 mg/kg). These high levels of K2O were also found 
by Al-Hinawi (2012). Soil reaction pH has a great effects on 
K2O availability, since pH is greater than 7 (most of the area 
pH >7).  Ca cations displaced K cations on the clay surfaces 
(exchange K by Ca), increasing K2O concentration in soil 
solution. Another possible reason is the clay mineral type 
as the presence of smectite and mica was reported by Al-
Hinawi (2012) which are the key sources of exchangeable K.

The results showed that most of the study area was 
medium in Fe and Zn and very low in B (Table 3, Figures 
8-10).  These results were in agreement with studies 
conducted by Habib (2006) and Al-Hinawi (2012). The 
low levels of micronutrients may be explained by the low 
concentration of these substances in parent materials and low 
organic matter in the soils. On the other hand, the intensive 
cropping patterns resulted in high uptake of micronutrients 
by crops. In spite of sufficient levels of Fe (relatively high in 
some areas) (Table 3), plants root may not absorb Fe because 
of the dominant phosphate inion P2O5 in soil solution (Habib, 
2006; Al-Hinawi, 2012).

Gurung, 1995). The severe shortage of nitrogen can be 
explained by low organic matter of soil, increased organic 
matter mineralization rates, inefficient use of nitrogen 
fertilizers on grown crops, which are depleted by crops in 
the study area (Vasu et al., 2017).

Figure 3. pH spatial distribution.

Figure 4. Organic matter spatial distribution.

Figure 5. N spatial distribution.
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Figure 6. P(P2O5) spatial distribution. Figure 9. B spatial distribution

Figure 7. K(K2O) spatial distribution Figure 10. Zn spatial distribution

Figure 8.  Fe spatial distribution.

3.3. Geostatistics for selected soil properties
3.3.1 Semivariogram analysis

Some geostatistical parameters and semivariogram 
model analysis are shown in Table 4. According to the lowest 
root mean square (RMSE), three theoretical semivariogram 
models (spherical, exponential, and Gaussian) were examined 
for the significant fit of soil properties. (Robertson, 2008)

The results showed that spherical model provided the 
best fit to semivariogram for pH, OM and available K(K2O), 
whereas exponential model was the best fit to semivariogram 
for available P (P2O5), Fe, and Zn. Finally, Gaussian model 
was the best fit to total N, and B. Because of its ability to 
explain the maximum variability (Venteris et al., 2013). 
Many findings recommend exponential model for estimating 
spatial soil distribution (Lark, 2000; Tripathi et al., 2015).  
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3.3.2 Spatial autocorrelation
It is assumed, at the beginning of the study, that the spatial 

pattern of soil properties distribution is random. Therefore, 
the Moraǹ s index was calculated by using ArcMap to identify 
the spatial pattern, which varies depending on the feature 
locations and value of soil properties between dispersed, 
random and clustered samples (Moran, 1950). According 
to ESRI (2017), the spatial pattern does not reflect random 

distribution if the p-value is less than 0.05 and Z-score is 
either (very high) < 1.96 or (very low) > -1.96. As presented 
in Table 5 and according to the test of significant values, 
most of the studied soil chemical properties (pH, OM, N, 
P2O5, and B) had clustered distribution, whereas the spatial 
pattern of K2O, Fe, and Zn was not different at p-value less 
than 0.05 from random distribution.

Table 4. Semivariogram analysis of spatial structure in soil properties

Table 5. Areas of different soil groups based on soil parameters classes

Soil 
parameter ME RMSE Model Range Lag size Nugget Partial sill Sp.D DES

Sp.D

pH 0.142 0.147 S 1871 989 0 0.065 0.065 0 ST

OM 0.2 0.19 S 12067 1718 0.34 0.071 0.15 0.32 M

N 0.026 0.027 G 15208 1798 0.11 0.056 0.169 0.65 M

P(P2O5) 29.2 16.2 E 3551 407 0.135 0.947 1.082 0.12 ST

K(K2O) 143.92 127.38 S 6957 580 0.085 0.006 0.091 0.92 W

Fe 7.7 6.36 E 7085 590 0.11 0.126 0.236 0.46 M

B 0.13 0.104 G 3551 446 0.187 0.171 0.351 0.53 M

Zn 1.38 1.344 E 7350 1628 0.507 1.89 2.397 0.21 ST

ME: mean error, RMSE: root mean square error, E: Exponential, G: Gaussian, S: Spherical, ST: strong, M: Moderate, and W: Weak. Unit for range and lag 
size, m. Sp.D: spatial dependency, DES. Sp.D: descriptive of spatial dependency.

Spatial dependency (Sp. D) ranged from 0 in pH to 0.92 
in available K. Clearly, Sp. D was strong (in pH, available 
P and Zn), and moderate (in OM, N, Fe and B) versus weak 
in available K. These results may be counted to external 
factors such as variable rates of applied K fertilizers in the 
study area. Spatial dependency ranges were large and varied 

between 3551 m in available P and B and 15208 m in total N, 
indicating that the optimum sampling interval varies greatly 
among different soil properties. The range values give an 
idea about the correlation between different soil sampling 
locations, along with the maximum spatial dependency 
distances between them (Akpa et al., 2014).

Parameter Unit Rating Existing class Area(h) % of total area

pH

- 6.1-6.5 Slightly acidic 766.62 1.47

6.5-7.3 Neutral 46913.4 90.52

7.3-7.8 Slightly alkaline 4619.89 8.01

OM % 0.86-1.26 Low 52300 100

N
% 0.05> Very low 5114.24 8.97

0.05-0.1 Low 47185.46 91.04

P (P2O5)

mg/kg 0-6.9 Very low 9824.16 18.95

6.9-18.4 Low 31299.36 30.38

18.4-32.2 Medium 8695.23 16.77

32.2-46 High 1965.82 7.79

46< Very high 45.8 0.11

K (K2O)
mg/kg 300-540 High 47359.23 91.39

540< Very high 4461.762 8.61

Fe
mg/kg 6-20 Medium 49524.42 95.55

20-50 High 2301.9 4.45

B

mg/kg 0.2> Very low 42050.39 81.13

0.2-0.5 Low 9738.97 19.79

0.5-1.2 Medium 510.64 0.08

Zn mg/kg 2-10 Medium 52300 100
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It is assumed, at the beginning of the study, that the 
spatial distribution is close to random. On the other hand, 
positive Moraǹ s index value indicates neighboring values 
are similar, referring to spatial dependency, while the 
negative Moraǹ s index value implies that neighboring 
values are dissimilar, referring to the opposite of spatial 
dependency. Also, the zero Moraǹ s index value points out 
shortage of spatial pattern (Lloyd, 2010; Al-Ahmadi and Al-
Zahrani, 2013). As showen in the Table, except K2O, most 
of the selected soil properties demonstrated positive Moraǹ s 
index values that indicate spatial dependency.

Table 5. Test of significance for the spatial pattern of studied soil properties

soil parameter Moran`s index Variance p-value Z-score

pH 0.385 0.0020 0.00 8.65

OM 0.065 0.0021 0.057 1.89

N 0.107 0.0021 0.004 2.819

P2O5 0.08 0.0019 0.01 2.410

K2O -0.01 0.0020 0.701 0.261

Fe 0.02 0.0021 0.350 0.93

B 0.12 0.0019 0.00 3.48

Zn 0.004 0.0021 0.55 0.589

4. Conclusions
The application of geostatistical approach involving 

descriptive statistics and semivariogram analysis improved 
the description of spatial variability for soil chemical 
properties at 0 to 30 cm deep. The descriptive statistics 
showed that most of measured soil variables were skewed 
and abnormally distributed, and the available K2O data 
were highly variable (338 to 595 mg/kg). Geostatistical 
interpolation identified that exponential, spherical or 
Gaussian models provided the best fit to semivariograms, 
depending on the soil chemical variable, showing in general 
strong, moderate or weak spatial dependency for all variables.

Kriging maps of soil variables were found effective 
in interpreting the distribution of soil properties in non-
sampled locations based on sampled data. These maps help 
farmers in making efficient management decisions based on 
their proper understanding of the conditions of existing farm 
soils. These results show that Kriging-geostatistical analysis 
is an effective prediction tool for exploring the spatial 
variability of soil nutrients. Generally speaking, this tool is 
recommended for future soil sampling campaigns in Syria.
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Santos-France ś, F., Martı́ nez-Graña, A., Alonso, Rojo, P., 
Garcı́ a Sa´nchez, A. (2017b). Geochemical Background and 
Baseline Values Determination and Spatial Distribution of 
Heavy Metal Pollution in Soils of the Andes Mountain Range 
(Cajamarca-Huancavelica, Peru). International journal of 
environmental research and public health 14(8): 859.
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