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Abstract

1. Introduction

Land use and land cover (LULC) change are some of the 
major global changes predicted for the future (Su et al., 2012). 
LULC change at the peri-urban is a complex and dynamic 
process that involves both natural and human activities 
(Xiao et al., 2006). LULC is also the primary driving force 
of sustainable development and global environmental change 
(Wali et al., 2019). The change in LULC varies from region 
to region, in rural areas is attributed due to agriculture 
expansion while in urban areas it is attributed to urban 
development. The causes and consequences of LULC change 
are related to human-induced activities which are largely 
been examined independently (Basommi et al., 2016). Global 
environmental changes such as emissions of greenhouse 
gases, global climate change, loss of biodiversity, and loss 
of soil resources have been closely linked to LULC changes 
(Li et al., 2016). Additionally, LULC changes are also 
faced with threats of rapid economic development such as 
commercialization and urbanization (Hyandye et al., 2017). 
However, this threat has led to the loss of lands suitable for 
farming especially in developing countries such as Nigeria 
(Li et al., 2016).

Studies have shown that urbanization is a major concern 
of many world regions. It was estimated that the urban 
population will increase from 3.3 billion in 2007 to 6.4 
billion in the year 2050 (United Nations, 2008). Due to this 
reason, more attention has been given to peri-urban areas as 
a means to alleviate poverty and ensure food security (Tiani 
et al., 2015). Globally, about 800 million people engaged 

in peri-urban agriculture (FAO, 1999). According to FAO, 
(2010) peri-urban can be described as “the area of transition 
between well recognized urban and rural land uses. It has 
also been conclusively shown that peri-urban contributes to 
food security (FAO, 2010). Despite their importance, peri-
urban are still faced with anthropogenic activities such as 
discharge of effluents and vicinity dumpsite, etc. (Awoniran 
et al., 2013).

Monitoring and assessing LULC change at the peri-
urban calls for detail and accurate information. Although, 
assessing LULC changes in developing countries requires 
urgent attention especially in the spatial environment of 
today (Tobore et al., 2021). Satellite remote sensing (SRS), 
in conjunction with Geographic information systems 
(GIS), have been widely applied and are recognized as an 
indispensable tool in obtaining accurate and timely spatial 
data for LULC changes (Mishra et al., 2016; Khan et al., 
2016). SRS provides cost-effective valuable information 
using multispectral and temporal data which is very useful 
in monitoring and evaluating LULC change (Hua, 2017). 
For instance: Landsat imagery has been applied extensively 
for predicting and monitoring LULC change efficiently 
at different scales and times (Hua, 2017). GIS provides a 
flexible user environment for collecting, storing, displaying, 
and analyzing spatial data (Khan et al., 2016). However, the 
commonly used models for monitoring and predicting LULC 
changes are Analytical equation-based models (Shamsi, 
2010), Statistical models (Hyandye et al., 2017), Evolutionary 
models (Aitkenhead and Aalders, 2009), Cellular automata 
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Land use and land cover (LULC) change at the peri-urban is a complex and dynamic process that involves global environmental 
change. The substantial increase in the human population has led to threats of peri-urban. This study identified the pattern 
of the LULC change for the years 2014 and 2019 using Landsat satellite images. Soil samples were collected, analyzed, and 
classified. Principal component analysis (PCA) and Contamination factor (CF) were also determined on the soil nutrients. 
The Markov Chain (MC) and Cellular Automata (CA) methods were utilized to simulate the LULC maps for the year 2024. 
Variations among the soil properties decrease across the soil depths and the soils were classified as Mollic Cambisols and 
Abruptic Eutric. Bioaccumulation index varied substantially with high significant contamination of soil iron. The accuracy 
of LULC simulation models is more than 85% based on the validation results. The simulation result shows that if the current 
encroachment continues, the built-up areas will increase by 32% and thus would leading to loss of farmlands and a decrease 
in food production. Moreover, the rate of economic development in the urban has caused rapid expansion and migration of 
people into the study area. This study is helpful for planners and decision-makers in ensuring sustainable land-use systems 
for peri-urban planning.
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models (Singh et al., 2015), Markov-chain models (Yang 
et al., 2012), Expert system models (Stefanov et al., 2001), 
and Multiagent models (Ralha et al., 2013). At present, the 
most widely used models in the monitoring and prediction 
of LULC change are Cellular automata and Markov chain 
(Sohl and Claggett, 2013; Myint and Wang, 2006). Markov 
chain models can quantitatively predict the dynamic changes 
in LULC patterns (Wu et al., 2010). In contrast, cellular 
automata models can predict the spatial distribution of 
landscape patterns but cannot predict temporal changes (He 
et al., 2006). Integration of Cellular automata and Markov 
chain (CA- Markov) model in LULC studies has advantages 
such as dynamic simulation capability; high efficiency with 
spatial and non-spatial data, scarcity and simple calibration; 
and ability to predicts complex and multiple lands covers 
patterns (Hyandye et al, 2017; Ansari, 2016). Moreover, 
many studies have applied CA- Markov model in monitoring 
and predicting LULC change in the urban (Shahidul Islam 
and Ahmed, 2011). Thus, few studies have been applied to 
predict changes in the peri-urban area using the CA - Markov 
model especially in developing countries such as Nigeria. 
Hence, this study seeks to integrate the CA-Markov model to 
evaluate the impacts of LULC change in peri-urban of Odeda 
Local government area (LGA) of Ogun State, Nigeria. More 
specifically, the study is targeted to map the spatial and 
temporal changes in LULC for the years 2014 and 2019. 
Therefore, the objectives of this study are:

1. To assess, characterize and classify the soil nutrients of 
the study area. 

2. To predicts the LULC change of the study area for 5 
years using the CA–Markov model.

2. Materials and methods
2.1 Description of the study area

2.2 Climate

2.3 Data Description 

2.4 Multi-temporal land cover mapping

The study area is located at Odeda Local Government 
Area (LGA) of Ogun State, southwestern Nigeria. Odeda 
falls in the peri-urban area of Abeokuta, close to the city 
of Ogun State. It falls between latitude 70 49’ to 7013’ and 
longitude 3079’ to 30 14’ zones 31 North (Figure 1). It has 
a total surface area of 1,560 km² and a population of 
109,449 according to the National population census (2006). 
Agriculture is the main source of occupation and it also 

serves as their major livelihood. The crops grown in the area 
are majorly arable, and permanent crops, such as maize, rice, 
and oil palm (Dada, 2017).

The climate of the study area is monsoonal and like all 
monsoonal climates: it has a contrast between well-defined 
dry and wet seasons (Adeleye et al., 2020). The wet season 
lasts from April to October with an annual rainfall of about 
2500 mm at the coast and about 1220 mm at the northern 
limit of the forest belt. The monthly mean minimum 
temperature is about 22.48°C while the monthly mean 
maximum temperature is about 31.24°C with an average 
yearly temperature of about 26.6°C (Adeleye et al., 2020).

Multi-spectral Landsat satellite data for the years 2014 
and 2019 were acquired from the United States Geological 
Survey (USGS) to assess the LULC change. Due to 
atmospheric error and avoidance of seasonal variation, 
the Landsat images were downloaded during the period 
of the dry season. Since the Landsat satellite data are free 
of radiometric and geometric distortions, there was no 
additional geo-rectification or image-to-image registration 
needed for image pre-processing. Information of the images 
acquired from the USGS online data repository (image type, 
date, spatial resolution, number of bands, Path and row, and 
bands composite) are shown in Table 1.

The collected satellite images were enhanced in Idrisi 
selva Software via (3 by 3) majority filter techniques for 
better visibility. True Color Composite (TCC) was generated 
using suitable combinations of bands for the satellite images 
(d’Entremont and Thomason, 1987; Good and Giordano, 
2019). Considering the “Nigeria Land Classification 
System” and the goal of this study, Anderson and Hardy 
(1976) classification scheme II and prior knowledge of the 
study area for over 5 years was used to identify the Area 
of interest (AOI) features. The images obtained from the 
Landsat image are classified into 5 LULC classes based 

on the Maximum Likelihood Supervised Classification 
(MLSC) technique(Table 2). The MLCS operation is carried 
out due to its good performance, visualization, and easy 
classification algorithm (Liu, 2005; Sun et al., 2013; Biro et 
al., 2013; Zhang et al., 2015). The accuracies of land cover 
maps were evaluated using 150 ground truth points from 
the field and with the support of the year 2019 Google Earth 
image. These 150 pixels were selected through the random 
sampling process. The Kappa statistics and confusion matrix 
was calculated for accuracy assessment (Foody, 2002; 
Pontius Jr and Millones, 2011; Story and Congalton, 1986).

Figure 1. The study area (Odeda LGA) showing the contours and 
some major settlements.

Table 1. Details of the Landsat images acquired for the assessment of the Odeda LULC study

Image Type Acquisition date Path and row Bands composite No of bands Spatial Resolution

LandSat 7 19/01/2014 P191, R55 432 10 30 Meter

LandSat 8 20/01/2019 P191, R55 652 11 Meter
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Table 2. The Description of the land categories.

No Class name Description

1 Builtup Area Residential, commercial, industrial services, and transportation network

2 Vegetation Mixed forest and grass

3 Bareland Vacant land, open space, sand, bare soils, and landfill sites

4 Farmland Rainfed cropping planted cropping areas.

5 Waterbodies River, wetlands, lakes, ponds, and reservoirs.

2.5 Simulation Pattern Analysis

2.6 Accuracy assessment

2.7 Vegetation Cover analysis

To simulate the future LULC pattern of the study area, 
the Markov Chain (MC) and Cellular automata (CA) model 
method was applied. MC performs better at modelling 
LULC in both temporal and spatial dimensions for its 
higher accuracy (Pontius and Jeffrey, 2007). CA underlies 
the dynamics of LULC change for any location (cells) based 
on the concept of proximity (Balogun and Ishola, 2017). The 
CA-Markov model was implemented in the Landsat images 
of the years2014 and 2019 in the Idrisi Selva environment 
(Tobore et al., 2021). The LULC change prediction was based 
on the dependent and independent variables. The dependent 
variable used includes the Digital elevation model (DEM), 
aspect, distance from a major road, and distance from the 
river (Figure 2a and 2b). The DEM and aspect were derived 
from the Shuttle radar topographic mapper (SRTM) of 
30-meter resolution downloaded from the USGS website. 
The DEM ranges from the lowest value of 33 meters to the 
highest value of 266 meters from mean sea level (MSL) in 
the study area. The aspect maps indicate a more or less flat 
surface presence in the study area. Distance from major 
roads and rivers were derived from vector layers from an 
open street map. The analysis of the dependent variable 
was carried out using the ArcGIS 10.5 environment using 
Euclidean distance operation. The independent variables 
are the LULC of the year 2014 and 2019 classification maps. 
The independent and dependent variables were used as input 
parameters to generate the transition probability matrix. The 
transition matrix analysis generates an empirical likelihood 
image that estimated the probability of change between 
LULC in the study area. The random sampling method was 
applied using the maximum iteration and neighbourhood of 
3 by 3 cells i.e. 9 cells. The Cellular automata and Markov 
Chain were predicted according to Ma et al. (2016):

To ensure the validity of the model for predicting LULC 
change for the projected year, a validation process was 
performed using the existing database. The CA-Markov 
model was validated to simulate the LULC of the year 2019, 
which is compared to the estimated LULC map of the same 
year. The validation process was performed in the Idrisi 

Vegetation indices derived from satellite remote sensing 
data are one of the primary sources of information for 
monitoring the Earth’s vegetation cover (Gilabert et al., 
2002). Vegetation indices are usually developed to extract 
vegetation information from two or more spectral bands. In 
this study, LULC changes were assessed with Soil adjusted 
vegetation index (SAVI) for the years 2014 and 2019. SAVI 
has a better efficiency to calculate vegetation index by 
reducing the influence of soil background (Gilabert et al., 
2002). Afterwards, SAVI was used to identify significant 
changes in the vegetation cover of the study area. The 
equation is given by (Huete, 1988):

where: NIR represents the spectral reflectance 
measurements in the near-infrared regions of band 5; Red 
represents the Spectral reflectance measurements in the 
visible red of the band 4 and L is the constant or correction 
factor, ranges from 0 to 1.

selva environment producing several Kappa (K) parameters: 
kappa for grid cell level location (Klocation), kappa for 
no information (Kno), kappa for stratum-level location 
(KlocationStrata), and kappa standard (Kstandard) following 
the standard procedure of Pontius Jr and Millones (2011).

Where: : represent the land-use status

T, and t+1 represent the time point

: represent the state transition probability matrix

............................................................ Eq. 1

............................................. Eq. 2

............................ Eq. 3

Figure 2a. The study area (Odeda LGA) showing the distance from 
Major Road and River.

Figure 2b. The study area (Odeda LGA) showing the digital 
elevation model and Aspect.
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Table 3. Geochemical and pollution indices

Source: Pejman et al. (2009)

2.8 Soil mapping

2.9 Soil classification 

2.10 Soil pollution load assessment model 

2.11 Geospatial mapping of soil heavy metals

2.13 Statistical analysis

2.12 Soil samples analysis

The study area was sampled using reconnaissance and 
stratified grid sampling. The slopes from which transects 
were cut for soil mapping include pedon 1 (Odeda), pedon 2 
(Olodo), and pedon 3 (Isolu). Soil sampling was collected at 
the soil depth of 0 -15cm and 15 – 30cm for soil analysis. A 
total number of 74 soil samples were collected for this study. 
Soil sampling coordinate point was recorded using a Global 
positioning system (GPS). At each pedon, representative soil 
profile pits measuring 2 m by 1.5 m by 2 m (meters) were dug 
at the predominant slope i.e. Crest, middle and lower slope. A 
total of 9 soil profile pits were dug and described based on soil 
morphology, chemical, and physical which was suggested by 
FAO, (2009) procedure. Soil samples were collected from 
the different pedogenic horizons and then processed in the 
laboratory after air-drying at room temperature. 

preindustrial or preanthropogenic activities in southwestern 
Nigeria, geochemical background concentration values of 
9 mg/kg−1 were used to assess the quality of the soil in the 
study area according to Pejman et al. (2009) as described in 
table (3).

Based on morphological characteristics and laboratory 
data of the soil mapping, the soils of the study area were 
classified using the USDA Soil Taxonomy (Soil Survey 
Staff, 2010) and the World Reference Base (WRB) system of 
FAO/IUSS Working Group (2006).

Pollution by soil heavy metals has been widely studied 
using several indices (Odukoya et al., 2016). In this study, 
the Contamination factor (CF) index was used to assess 
the soil heavy metal concentration. CF is used to assess 
contamination level relative to the average concentration of 
the respective heavy metals in the environment i.e. soil to the 
measured background values from the previous study with 
similar geological origin or uncontaminated soil (Sutherland, 
2000; Tijani et al., 2004; Uriah and Shehu, 2014). The CF is 
often expressed based on the formula previously described 
by Hakanson (1980) and has been applied by Odukoya et al. 
(2016).

Among the metal concentration, iron (Fe), zinc (Zn), and 
manganese (Mn) were selected to assess the level of heavy 
metals using 0 -15 cm soil depth. According to Obiora et al. 
(2016), Fe, Zn, and Mn are the most common contaminated 
heavy metals found in Nigeria’s soils and environment. The 
collected coordinates of the soil heavy metals concentration 
were processed in an excel spreadsheet and saved as text 
delimited. Each of these metal concentrations was plotted 
and display in the ArcMap. Thereafter, the Inverse difference 
weight (IDW) technique was used for the interpolation of soil 
data according to Li and Heap (2008). Raster calculator tool 
in ArcGIS 10.5 environment was used to assess the formula 
described by Odukoya et al. (2016) for soil concentration 
mapping for the study area. Due to no data information of 

The relationship across the soil nutrients was subjected 
to Principal component analysis (PCA), correlation, and 
regression analysis using R- statistics v4.0.3. The correlation 
coefficients were estimated for all possible variable 
combinations to generate a correlation matrix.

The soil samples were air-dried and passed through a 
2mm diameter sieve before analysis for the soil’s physical and 
chemical properties. Afterwards, soil pH was determined 
in potassium chloride and water suspensions with a glass 
electrode pH meter (McLean et al., 1982). Soil organic carbon 
(OC) was determined by the chromic acid oxidation method 
(Walkley and Black, 1939). The total nitrogen (TN) of the 
soil was determined by the macro Kjeldahl method. The soil 
available phosphorus (P) was determined according to the 
Bray-1 method. Exchangeable bases Calcium, Magnesium, 
Potassium, and Sodium (Ca2+, Mg2+ K + and Na+) in the soil 
were extracted with 1 N ammonium acetate solution. The 
Ca2+ and Mg2+ were determined with atomic absorption 
spectrophotometer (AAS) while (K+) and (Na+) were read 
on a flame photometer. Exchangeable acidity (H+) in the soil 
was extracted with 1N Kcl and measured using the titration 
method (Anderson and Ingram, 1993). Effective cation 
exchange capacity (ECEC) was estimated by the summation 
of the exchangeable acidity and exchangeable bases. Base 
saturation (BS) was calculated as the percentage ratio of the 
exchangeable bases to the ECEC following the procedure of 
Udo et al. (2009). The particle size distribution of the soil 
was determined by the hydrometer method (Bouyoucos, 
1962). For heavy metal analyses, sub-samples (0.5 g) of 
each of the soil were digested. Digestion was done with 10 
ml of a mixture of nitric (HNO3) and perchloric (HClO4) 
acid in ratio 2:1 (v/v) for 90 min, initially at 150° C. After 
which 2ml of concentrated HCL was added to the mixture. 
The temperature of the digest was then increased to 230° 
C for another 30 minutes on the digester. On completion 
of digestion, digests were allowed to cool down at room 
temperature. Thereafter, the content of each digestion tube 
was transferred into a 50 ml volumetric flask and made to 
volume with distilled water.

Where C: metal represents the concentration (mg/kg−1) of 
a given heavy metal in soil 

C Bkg: represent the background or preindustrial 
concentrations (mg/kg−1).

................................................................. Eq. 4

Classes Pollution 
Intensity Soil Quality

0 -1 0 Unpolluted

1-2 1 Unpolluted to moderately polluted

2-3 2 Moderately polluted

3-4 3 Moderately to highly polluted

4-5 4 Highly polluted

5-6 5 Highly to very highly polluted

6-7 >5 Very highly polluted
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3. Results and Discussion
3.1 Land use/cover mapping

Periodical assessment characteristics and colour 
composite were used to classify the LULC change of the 
studied area. Results of the MLSC algorithm for evaluating 
LULC changes between the year 2014 and 2019 patterns 
are presented in Figure (3) and (4). Overall classification 
accuracy of MLSC was 94.10% and 95.87% in the years 
2014 and 2019 respectively (Table 4). For validation, the 
predicted LULC map of 2019 was compared with the 
observed LULC map of 2019 using kappa index statistics. 
Based on the evaluation of predicted LULC with observed 
LULC scenarios, a kappa statistic for quantity and location 
was derived. The statistics showed that Kno, Klocation, 
KlocationStrata, and Kstandard values were 0.8603, 0.8869, 
0.8743, and 0.8645 (overall kappa), respectively. After the 
prediction, it was found out that all kappa index values 
were > 0.86 showing high agreement between predicted and 
observed LULC maps. The statistical analysis of the multi-
temporal LULC maps revealed that significant changes 
have occurred. From the change analysis of LULC between 
2014 and 2019, it was observed that there was an increase in 
farmland, built-up, bare land, and water bodies with a value 
of 30.80%, 20.18%, 17.63%, and 1.92% respectively while 
vegetation was decreased from 60.51% to 29.43% (Table 5).

To predict future LULC change, the land use map of 2014 
and 2019, and then the output was used to predict future LULC 
for the year 2024 using the CA-Markov model (Figure 5). The 
significant changes that are predicted to occur between 2019 
and 2024 would be due to the conversion of bare land, water 
bodies, and vegetation. Therefore, change analysis of LULC 
between 2019 and 2024 indicated that built-up and farmland 
will increase in the order of 163.87 ha (Hectare) and 124.36 
ha, while bare land, vegetation, and water bodies were 
decreased by –140.13ha, 132.67ha, and -15.43ha, respectively 
(Table 6). The results revealed that a sudden increase in 
farmland and built-up area can be attributed to a substantial 
increase in human activities. Besides, the increase observed 
in farmland could also be traced to the over-exploitation of 
land resources which serves as a means of livelihood and 
source of occupation for the majority of people living in the 
peri-urban area. Also, an increase in the built-up area by 
the next 5 years, may lead to more people migrating from 
urban to peri-urban due to unplanned population growth in 
the city. However, the main reason for these changes could 
be attributed to some factors such as agricultural land use 
expansion, biodiversity loss, pollution of water and soils 
in the studied area. Weng and Yang (2004) pinpointed that 
both geopolitical and economic factors contribute to the 
increases in human activities and thus leading to built-up 
expansion. Adepoju et al. (2006) also stated that LULC 
change has been recognized as an important driver of global 
environmental changes. The present study also corroborates 
with Nachtergaele et al. (2011) who found out that peri-urban 
areas are rapidly experiencing biodiversity decrease and 
high human activities thereby leading to the sudden decrease 
in vegetation cover and built-up expansion. However, further 
studies supporting this study results can be found in Bankole 
and Bakare (2011).

Figure 3. The study area (Odeda LGA) showing the year 2014 
LULC changes.

Figure 4. The study area (Odeda LGA) showing the year 2019 
LULC changes.

Figure 4. The study area (Odeda LGA) showing the year 2019 
LULC changes.
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Figure 6. The study area (Odeda LGA) showing the year 2014 
and 2019soil adjusted the Vegetation index.

Figure 7. Variable factor map of Principal component analysis 
for soil sampled at 0 - 15cm depth.

Table 4. Accuracy assessment of the LULC classified maps (Odeda LGA) for the years 2014 and 2019.

Table 5. Change analysis of LULC (Odeda LGA) between the years 2014 and 2019.

Table 6. Change analysis of LULC(Odeda LGA) between the years 2019 and 2024.

User Accuracy (%) Producer Accuracy (%)

LULC WB BL VG FD BA Overall Classified 
Accuracy WB BA VG FD BA  Overall Statistic 

  Kappa

2014 98.4 98.9 98.5 94.3 97.2 94.10% 98.5 96.4 95.8 88.8 95.3  0.9488

2019 98.2 97.5 98.7 94.9 96.5 95.87% 99.8 95.9 88.2 96.8 97.5  0.9365
LULC: WB: Waterbodies; BL; Bareland; FD: Farmland; VG; Vegetation; BA

LULC
Area in 2014 Area in 2019 Change in 2014 -2019

(ha) (%) (ha) (%) (ha)
Waterbodies 18.33 1.34 26.32 1.92 7.99

Bareland 135.21 9.90 240.82 17.63 105.61
Farmland 256.93 18.81 420.63 30.80 163.70
Vegetation 826.14 60.51 401.89 29.43 - 424.25

Builtup 128.66 9.42 275.61 20.18 146.95
Total 1365.27 100 1365.27 100

LULC
Area in 2019 Area in 2024 Change in 2019 -2024

(ha) (%) (ha) (%) (ha)
Waterbodies 26.32 1.92 10.89 0.79 -15.43

Bareland 240.82 17.63 100.69 7.37 -140.13
Farmland 420.63 30.80 544.99 39.91 124.36
Vegetation 401.89 29.43 269.22 19.71 -132.67

Builtup 275.61 20.18 439.48 32.18 163.87
Total 1365.27 100 1365.27 100

3.2 Satellite-based vegetation Assessment 3.3 Soil fertility variation at 0 -15cm depth
Vegetation indices have been used to monitor temporal 

changes associated with vegetation and spectral reflectance 
(Gilabert et al., 2002). One of these commonly used 
vegetation indices is the SAVI. SAVI appears to be more 
reliable and less noisy than the NDVI (Normalized difference 
vegetation index) (Waswa et al., 2012). In this study, the 
SAVI vegetation index was used and the vegetation cover 
ranged from -0 to 0.2715 for the year 2014 and 0 to 0.0317 
for the year 2019 (Figure 6). The results revealed that during 
the year 2019, low vegetation-covered was experienced 
when compared to that of the year 2014. The effects of the 
low vegetation observed in the year 2019 might be traced 
to the rate of human activities experienced in the study 
area such as farmland and built up expansion. Additionally, 
indiscriminate grazing of cattle might also be responsible 
for the low vegetation observed in the year 2019 especially 
during the dry season when the chlorophyll content is low.

As shown in Figure 7, cluster variations were observed 
among the chemical soil properties. The soil zinc (Zn) was 
observed along the same dimension (dimension 2) with 
exchangeable acidity and iron (Fe). This simply means that 
as Zn decreases exchangeable acidity and soil iron also 
decrease. The exchangeable bases; magnesium (Mg), sodium 
(Na), potassium (K), and effective cation exchanged capacity 
(ECEC) were also observed along the same dimension 
(dimension 3). This confirms the fact that an increase in 
exchangeable bases will lead to higher ECEC in the studied 
soil. The soil pH, available phosphorus (P), soil total nitrogen 
(TN), and soil organic carbon (OC) were found in the same 
dimension. The calcium, soil Fe, Mg, and base saturation 
also behaved the same way.
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3.4 Correlation among soil properties at 015-cm.

3.5 Correlation among soil properties at 15 -30cm depth

From Table 7, high R squared (R2) values were observed 
among soil OC versus TN, K versus Total exchangeable 
bases (TEB), ECEC, and TEB versus ECEC (Figure 8 - 10). 
The linear regression plots and modelling equation shows 
how the soil properties could be predicted in the study area 
(Table, 7).

In Figure 11, Soil O.C and N followed a similar direction 
which indicates correlation among the soil properties and 
thus affected by the same factors. Both soil pH (water and 
potassium chloride) along with available P is found around 

dimension 2. All the Exchangeable bases (Ca, Mg, Na, K, 
and Mn) and TEB have good relationships as displayed in 
dimensions 2 and 3. In line with the PCA, soil O.C and N 
have a high correlation. The exchangeable bases also showed 
great relationships as highlighted in yellow (Table 8).

Figure 8. The study area (Odeda LGA) showing the linear regression 
between Nitrogen and Organic Carbon.

Figure 9. The study area (Odeda LGA) showing the linear regression 
among K versus TEB/ECEC.

Figure 10. The study area (Odeda LGA) showing the linear 
regression between TEB and ECEC.

Figure 11. The study area (Odeda LGA) showing the variable factor 
map of principal component analysis for soil samples at 15-30 cm.

Table 7. The study area (Odeda LGA) showing the R2 correlation among soil properties at 0-15cm soil depth.

O.C AvP N Ex.A Na K Ca Mg TEB ECEC BS pHkcl pHwater Fe Zn

AvP 0.029

N 0.922 0.028

Ex.A 0.001 0.046 0.000

Na 0.004 0.044 0.002 0.001

K 0.011 0.014 0.020 0.001 0.108

Ca 0.019 0.002 0.001 0.099 0.005 0.059

Mg 0.002 0.003 0.000 0.001 0.048 0.108 0.270

TEB 0.009 0.002 0.010 0.006 0.298 0.890 0.159 0.205

ECEC 0.008 0.000 0.010 0.004 0.304 0.884 0.126 0.210 0.980

BS 0.001 0.029 0.000 0.666 0.108 0.177 0.227 0.065 0.290 0.179

pHkcl 0.001 0.043 0.001 0.020 0.004 0.000 0.006 0.039 0.001 0.000 0.026

pHwater 0.003 0.028 0.009 0.027 0.004 0.000 0.022 0.033 0.000 0.000 0.034 0.578

Fe 0.013 0.010 0.006 0.077 0.028 0.000 0.008 0.083 0.008 0.017 0.026 0.138 0.058

Zn 0.030 0.009 0.032 0.000 0.002 0.011 0.000 0.018 0.008 0.008 0.001 0.101 0.022 0.045

Mn 0.035 0.196 0.022 0.000 0.003 0.002 0.000 0.001 0.000 0.000 0.001 0.000 0.022 0.022 0.158
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3.6 Soil Mapping of the (Odeda LGA) study area

3.7 Soil Classification of the (Odeda LGA) study area

3.8 Geoconcentration of heavy metals in studied (Odeda LGA) 
soils

The diagnostic criteria of the pedons were classified 
according to the USDA Soil Taxonomy (Soil Survey Staff, 
2010) and World Reference Base for Soil Resources (FAO/
ISRIC/IUSS, 2006). The differentiating properties used 
for the soil classification include physical, chemical, and 
morphological soil properties. The particle size distribution 
classification indicated that the soil texture ranged from 
sandy to sandy loam.The high preponderance of sand 
indicated a dominance of low activity clay such as kaolinite. 
There was a consistent clay increase across the pedons 
leading to the formation of the argillic horizon. The soils 
were strongly acidic to neutral with a soil pH ranging from 
5.1 to 7.3. Available phosphorus (< 8 to 20 mg/kg), and total 
nitrogen ranged from low to medium (<0.1 to 0.2%). Organic 
carbon had higher levels (1.0 to >20%) in the analyzed soils. 
The high content of soil OC observed could be traced to the 
presence of deposition or dumping of waste material into the 
vicinity of the studied area. ECEC of the soils is more than 
1.5 cmol/kg-1 in the studied soils and this may be responsible 
for the intense leaching of the exchangeable cations due to 
the parent material.

diameter) were observed and therefore classified as Ultisols. 
At the suborder level, there was high sandy distribution 
and irregular clay movement down the horizon at the soil 
profile. Therefore, at the suborder, the soils can be classified 
as Typic Kandiudult with ECEC of more than 1.5 cmol/kg-1. 
According to the World Reference Base for Soil Resources, 
pedons 1 and 2 were classified as Mollic Cambisols (Endo –
Skeleton, Eutric) due to the beginning or incipient subsurface 
horizon differentiation and alteration while pedon 3 were 
classified as Haplic Gleysols (Abruptic, Eutric) due to 
saturated groundwater and gleyic colour pattern (FAO/
ISRIC/IUSS,2006).

All the pedons were well-drained and dry for as long 
as 90 cumulative days with a mean annual soil temperature 
of 220C, thus considered as Udic moisture regime and 
classified as Isohyperthermic. This is also in consonance 
with the work done by Amusan and Ashaye (1991) which 
states that soil temperature regime in Southwestern - Nigeria 
can be classified as isohyperthermic. The pedons had 
base saturation of > 50% with a colour value from < 4 and 
chroma 3 or less, and soil OC content of more than 0.6% 
(Soil Survey Staff, 2010). This implies that the studied soils 
can be considered as mollic Epipedon. At the Order level, 
pedons 1 and 2 were classified as Inceptisol due to little or 
no soil profile development across the horizons (Soil Survey 
Staff, 2010), while at pedon major processes such as erosion, 
and highly leached soils due to slope position (>2 mm in 

The assessment of pollution levels of heavy metals 
soil contamination is significant to human health and 
environmental management. In this study, the soil heavy 
metals were interpolated and classified according to 
Pejman et al. (2009) soil quality. The order of contribution 
of the heavy metals to soil contamination increased in the 
following order: Fe > Mn > Zn. The overall pollution load 
index indicated that the soils ranged from unpolluted to 
highly polluted (Figure 12). The soil heavy metal reveals 
that vicinity waste and effluent discharge into rivers and 
streams could be responsible for the rate of contamination in 
the studied soils. According to Mazurek et al. (2017), heavy 
metals pollution in the soil varies according to its chemical 
and physical characteristics including texture, and buffering 
ability. Mazurek et al. (2017) and Pająk et al. (2015) also 
reported that the distribution and arrangement of soil heavy 
metals depend on landscape and/or topography. Hence, this 
could account for variation found among the soil heavy 
metals. The results are also in consonance with the studies 
of Ajmone-Marsan and Biasioli (2010) as well as that of 
Obiora et al. (2016) who reported that soil Fe, Mn, and Zn are 
among the most common contaminated heavy metals found 
in Nigeria soils and environment.

Table 8. The study area (Odeda LGA) showing the R2 correlation among soil properties at 15-30cm.

  O.C AvP N Ex.A Na K Ca Mg TEB ECEC BS pHkcl pHwater Fe Zn

AvP 0.044                            

N 0.933 0.029                          

Ex.A 0.015 0.108 0.039                        

Na 0.040 0.026 0.034 0.001                      

K 0.053 0.016 0.043 0.003 0.925                    

Ca 0.038 0.007 0.032 0.011 0.917 0.916                  

Mg 0.048 0.012 0.040 0.003 0.965 0.952 0.965                

TEB 0.047 0.016 0.039 0.004 0.969 0.985 0.959 0.985              

ECEC 0.011 0.024 0.013 0.012 0.004 0.002 0.007 0.017 0.000            

BS 0.013 0.032 0.034 0.648 0.129 0.147 0.157 0.108 0.145 0.093          

pHkcl 0.002 0.041 0.001 0.033 0.006 0.002 0.009 0.005 0.004 0.001 0.054        

pHwater 0.004 0.037 0.002 0.021 0.012 0.008 0.002 0.007 0.008 0.001 0.030 0.602      

Fe 0.002 0.009 0.006 0.068 0.008 0.003 0.011 0.008 0.006 0.004 0.019 0.135 0.117    

Zn 0.010 0.020 0.007 0.008 0.167 0.156 0.135 0.142 0.157 0.013 0.007 0.075 0.094 0.032  

Mn 0.048 0.161 0.091 0.002 0.060 0.043 0.057 0.060 0.052 0.017 0.007 0.000 0.008 0.012 0.150
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Figure 12. The study area (Odeda LGA) showing the Geoconcentration of soil iron, manganese, and zinc.

4. Conclusions

Acknowledgements

Funding

The study objective was to evaluate the significance of 
LULC change from the year 2014 to 2024 using GIS, RS 
data, and the CA-Markov model in Odeda LGA, Ogun State, 
Nigeria. Prediction of future LULC changes at the study area 
can help to manage the sudden encroachment. The finding 
reveals that built-up area and farmland was increased by 
32.18% and 39.91% from the year 2014 to 2019, which leads 
to a decrease in vegetation by (19.71%), bareland (7.37%), 
and water bodies (0.79%). The increase in built-up area 
and farmland could be attributed to the increase in human 
activities such as built-up expansion through the sudden 
encroachment of people migrating from urban to the study 
area. The soil nutrients variation shows a good relationship 
and decreases across the soil depths. Concentrations of 
soil Zn, Fe, and Mn in the study soils varied substantially 
with high significant contamination of soil Fe. The rate of 
human activities such as vicinity dumpsite, and discharge 
of industrial waste into the streams and river can lead to 
the transferring of toxic metals to the food chain; thereby 
leading to a potential risk to human health and a decrease 
in food production in the studied area. The present study 
demonstrated the efficiency of GIS and RS data in the study 
of LULC change using the Cellular Automata and Markov 
chain model.

The authors are sincerely grateful to farmers in the study 
area for their understanding and for allowing us to carry out 
this study on their farms. We are equally thankful to the 
USGS for assisting this research with data sets.

This research did not receive any specific grant from 
funding agencies in the public, commercial, or not-for-profit 
sectors.

Adeleye, N., Osabuohien, E., Adeogun, S., Fashola, S., Tasie, 
O., Adeyemi, G. (2020). Access to Land and Food Security: 
Analysis of ‘Priority Crops’ Production in Ogun State, 
Nigeria. In, Osabuohien. E (Ed.), The Palgrave Handbook of 
Agricultural and Rural Development in Africa (pp. 291-311). 
Cham-Switzerland: Palgrave Macmillan. DOI: https://doi.
org/10.1007/978-3-030-41513-6_14.

Adepoju, M.O., Millington, A.C., Tansey, K.T., (2006). Land 
Use/Land Cover Change Detection in Metroploitian Lagos 
(Nigeria): 1984-2000. AASPRS 2006 Annual Conference, 
Reno Nevada, May 1-5, 2006, Maryland: American Society for 
Photogrammetry and Remote Sensing.

Ajmone-Marsan, F., and Biasioli, M.(2010).Trace elements in 
soils of urban areas. Water, Air, and Soil Pollution 213: 121 
–143. DOI: 10.1007/s11270-010-0372-6.

Amusan, A.A., and Ashaye, T.I. (1991). Granitic-gneiss derived 
soils in humid forest tropical southwestern Nigeria I: Genesis 
and classification. Ife Journal of Agriculture 13 (1-2): 1 – 20.

Anderson, J.M., and Ingram, J.S.L. (1993). Tropical soil biology 
and fertility: handbook of Method of Analysis. UK:International 
Wallingford, (pp. 38–39). 

Anderson, J.R., and Hardy, E.E. (1976). A Land Use and Land 
Cover Classification System for Use with Remote Sensor Data. 
Geological Survey Professional.

Ansari, A. (2016). The final report of the research project 
“Identification of harvesting centres’ and effective factors of 
dust storms in Michigan Desert Wetland’’ Arak University.

Aitkenhead, M.J., and Aalders, I.H. (2009). Predicting land 
cover using GIS, Bayesian and evolutionary algorithm methods. 
Journal of Environmental Management 90(1): 236–50. https://
doi.org/10.1016/j.jenvman.2007.09.010 PMID: 18079039.

Awoniran, D.,R., Adewole, M.B., Adegboyega, S.A, Anifowose, 
A. Y. B. (2013). Assessment of environmental responses to 
land-use / land-cover dynamics in the lower Ogun River Basin, 
South-western Nigeria. International Journal of Sustainable 
Land use and Urban Planning 1(2):16-31.

Balogun, I., and Ishola, K. (2017). Projection of future changes 
in land-use/ land-cover using cellular automata/Markov 
model over Akure city, Nigeria. Journal of Remote Sensing 
Technology 5 (1): 22–31.

Bankole, M.O., and Bakare, H.O. (2011). Dynamics of urban 
land-use changes with remote sensing: Case of Ibadan, Nigeria. 
Journal of Geography and Regional Planning 4(11): 632-643.

Basommi, L.P., Guan, Q.F., Cheng, D.D., Singh, S.K. (2016).
Dynamics of land-use change in a mining area: a case study of 
Nadowli District, Ghana. Journal of Mountain Science 13(4): 
633–42. https://doi.org/10.1007/s11629-0153706-4.

Biro, K., Pradhan, B., Buchroithner, M., Makeschin, F.(2013). 
Land use/Land cover change analysis and its impact on soil 
properties in the northern part of Gadarif region, Sudan. Land 
Degradation and Development 24(1): 90–102. https://doi.
org/10.1002/ldr.1116.

Bouyoucos, G.H. (1962). Hydrometer method for making 
particle size analysis of soils. Agronomy Journal 54: 464-465. 
DOI: 10.2134 /agronj1962.00021962005400050028x.

References

Tobore et al. / JJEES (2021) 12 (4): 326-336334



Liu, H. (2005). Accuracy analysis of remote sensing change 
detection by rule-based rationality evaluation with post-
classification comparison. International Journal of Remote 
Sensing 25(5): 1037–1050. http://dx.doi.org/10.1080/014311603
1000150004.

Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, 
N., Chang, X., Liu, Y. (2016). Assessment of heavy metals 
contamination in sediments from three adjacent regions of the 
Yellow River using metal chemical fractions and multivariate 
analysis techniques. Chemosphere 144:264-72. DOI: 10.1016/j.
chemosphere.2015.08.026.

McLean, E. O., Dumford, S. W. F., Coronel, S.W. (1982). 
A comparison of several methods of determining lime 
requirements of the soil. Soil Science Society of America 
Journal 30(1): 26-30.

Mazurek, R., Kowalska, J., Gasiorek, M., Zadrozny, P., Joze- 
fowska, A., Zaleski, T. (2017). Assessment of heavy metals 
contamination in surface layers of Roztocze National Park 
forest soils (SE Poland) by indices of pol- lution. Chemosphere 
168: 839–850.

Mishra, VN., Rai, PK., Kumar, P., Prasad, R. (2016). Evaluation 
of land use/land cover classification accuracy using multi-
resolution remote sensing images. Geographic Forum 
XV(1):45–53. https://doi.org/10.5775/ fg.2016.137.i.

Myint S.W., and Wang, L. (2006). Multicriteria decision 
approach for land use land cover change using Markov chain 
analysis and a cellular automata approach. Canadian Journal 
of Remote Sensing 32(6): 390–404. https://doi.org/ 10.5589/
m06-032.

Nachtergaele, F.O., Velthuizen, H., Van, Verelst, L., Batjes, 
N.H., Dijkshoorn, J.A., Engelen, V.W.P. van, Fischer, G., 
Montanarella, L., Petri, M., Prieler, S., Teixeira, E., Wilberg, 
D., Shi, X. (2011). World Soil Database.Version 1.0. http://www.
fao.org/nr/water/docs/Harm-World-Soil-DBv7cv.pdf (accessed 
November 2015).

National Population Commission, Nigeria (2006). Census 
Report.

Obiora, S.C., Chukwu, A., Davies, T.C. (2016). Heavy metals 
and health risk assessment of arable soils and food crops around 
Pb–Zn mining localities in Enyigba, southeastern Nigeria. 
Journal of African Earth Sciences 116: 182-189. DOI: 10.1016/j. 
jafrearsci.2015.12.025.

Odukoya, A.M., Olobaniyi, S.B., Abdussalam, M. (2016). Metal 
pollution and health risk assessment of soil within an urban 
industrial estate, southwest Nigeria. Ife Journal of Science 
18(2): 573 – 583.

Pająk, M., Halecki, W., Gąsiorek, M. (2015). Accumulative 
response of Scots pine (Pinussylvestris L.) and silver birch 
(Betulapendula Roth) to heavy metals enhanced by Pb-Zn ore 
mining and processing plants: Explicitly spatial considerations 
of ordinary kriging based on a GIS approach. Chemosphere 
168: 851–859.	 DOI: 10.1016/j. chemosphere.2016.10.125.

Pontius, G.R., and Malanson, J. (2005) Comparison of the 
structure and accuracy of two land change models. International 
Journal of Geographical Information Science 19(2): 243-265. 
DOI: 10.1080/13658810410001713434.

Pontius, Jr. R. G., and Millones, M., (2011). Death to Kappa: 
birth of quantity disagreement and allocation disagreement for 
accuracy assessment. International Journal of Remote Sensing 
32 (15): 4407–4429. https://doi.org/10.1080/01431161.2011.5529
23.

Ralha, C.G., Abreu, C.G., Coelho, C.G.C., Zaghetto, A, 
Macchiavello, B, Machado, R.B. (2013). A multi-agent 
model system for land-use change simulation. Remote 
Sensing of Environment 42: 30–46. https://doi.org/10. 1016/j.
envsoft.2012.12.003.

Dada, S. (2017). Public-Private Dialogue Report on Land 
Administration, Registration and Acquisition in Ogun 
State. Nigeria: Deutsche Gesellschaft für Internationale 
Zusammenarbeit (GIZ).

D’Entremont, R.P., and Thomason, L.W. (1987). Interpreting 
meteorological satellite images using a colour-composite 
technique. Bulletin of the American Meteorological Society 
68(7): 762-768.

FAO-ILASA-China-Dokuchaev (1999). CD-ROM on Soil and 
Terrain Database for North and Central Eurassia (Version 1.0), 
FAO, ROME.

FAO/IUSS Working Group (2010). A framework for land 
evaluation.Rome: Soils Bulletin 31,

FAO, pp 25-42.

FAO, Rome (2006). The State of Food Insecurity in the World. 
Food and Agriculture Organization of the United Nations, 
Rome.

FAO, Rome (2009). The State of Food Insecurity in the World. 
Food and Agriculture Organization of the United Nations, 
Rome.

Foody, G.M. (2002). Status of land cover classification accuracy 
assessment. Remote Sensing of Environment 80 (1): 185–201.

Gilabert, M. A., González-Piqueras J., García-Haro F. J., Meliá 
J., (2002). “A generalized soil-adjusted vegetation index.” 
Remote Sensing of Environment 82(2):303-310. DOI:10.1016/
S0034-4257(02)00048-2.

Good, T., and Giordano, P.A., (2019). Methods for Constructing 
a Color Composite Image: Google Patents.

He, C., Okada, N., Zhang Q., Shi, P., Zhang, J. (2006). 
Modeling urban expansion scenarios by coupling cellular 
automata model and system dynamic model in Beijing, China. 
Applied Geography 26(3): 323–45. https:// doi.org/10.1016/j.
apgeog.2006.09.006.

Hua, A.K. (2017). Analytical and Detection Sources of Pollution 
Based Environmetric Techniques in Malacca River, Malaysia. 
Applied Ecology and Environmental Research 15 (1): 485-499.

Hakanson, L. (1980). An ecological risk index for aquatic 
pollution control of sediment ecological approach. Water 
Research 14: 975–1000.

Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). 
Remote Sensing of Environment 25: 295-309.

Hyandye, C, Mandara, G., Safari, J. (2017). GIS and Logit 
Regression Model Applications in Land Use/Land Cover 
Change and Distribution in Usangu Catchment. American 
Journal of Remote Sensing 3(1): 6–16. doi: 10.11648/j.
ajrs.20150301.12.

Pejman, A.H., Bidhendi, G.R.N., Karbassi, A.R., Mehrdadi, 
N., Bidhendi, M.E. (2009). Evaluation of spatial and seasonal 
variations in surface water quality using multivariate statistical 
techniques. International Journal of Environmental Science 
and Technology 6: 467–476 (2009). DOI: 10.1007/BF03326086.

Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z., Zhu, Y.G. 
(2016). Health risks of heavy metals in contaminated soils 
and food crops irrigated with wastewater in Beijing, China. 
Environmental Pollution 152(3): 686–692. https://doi. 
org/10.1016/j.envpol.2007.06.056.

Li, X., Min, X.U., Cao, C., Singh, P.R., Chen, W., Ju, H. (2016). 
Land use and land cover changes and their influence on the 
Ecosystem in Chengdu City during the period of 1982 – 2018. 
Sustainability 10: 3580. 

Li, J., and Heap, A.D. (2008).A Review of Spatial Interpolation 
Methods for Environmental Scientists. Geoscience Australia, 
Record 2008/23, 137 pp.

Tobore et al. / JJEES (2021) 12 (4): 326-336 335



Shahidul Islam, M.D., and Ahmed, R. (2011). Land-use change 
prediction in Dhaka city using GIS aided Markov chain 
modeling. Journal of Life and Earth Science 6: 81-89.

Shamsi, S.R.F., (2010). Integrating Linear Programming and 
Analytical Hierarchical Processing in Raster-GIS to Optimize 
Land Use Pattern at Watershed Level. Journal of Applied 
Sciences and Environmental Management 14(2): 81–5.

Singh, S.K., Mustak, S., Srivastava, P.K., Szabo, S., Islam, 
T. (2015). Predicting Spatial and Decadal LULC Changes 
Through Cellular Automata Markov Chain Models Using Earth 
Observation Datasets and Geo-information. Environmental 
Processes 2(1):61–78.

Sohl, T.L., and Claggett, P.R. (2013). Clarity versus complexity: 
Land-use modeling as a practical tool for decision-makers. 
Journal-Environ Manage 129: 235–43. PMID:23954777. https://
doi.org/10.1016/j.jenvman.2013.07.027.

Soil survey staff. (2010). Keys to soil taxonomy,. Washington D. 
C.: USDA soil conservation service revised edition (9th).

Stefanov W.L., Ramsey M.S., Christensen P.R. (2001). 
Monitoring urban land cover change: An expert system 
approach to land cover classification of semiarid to arid urban 
centers. Remote Sensing of Environment 77 (2): 173–85.

Su, C., Jiang, L., Zhang, W. (2012). A review on heavy metal 
contamination in the soil worldwide: Situation, impact and 
remediation techniques. Environmental Skeptics and Critics 
3(2): 24–38. https://doi.org/10.1016/j.envint.2014.04.014.

Sun, Y., Zhou, Q., Xie, X., Liu, R. (2013). Spatial, sources 
and risk assessment of heavy metal contamination of urban 
soils intypical regions of Shenyang, China. Journal of 
Hazardous Materials 174(1–3): 455–462. DOI: 10.1016/j. 
jhazmat.2009.09.074.

Sutherland, R. (2000). Bed sediment-associated trace metals in 
an urban stream, Oahu, Hawaii. Environmental Geology 39(6): 
611–627. DOI: 10.1007/s002540050473.

Story, M., and Congalton, R.G. (1986) Accuracy Assessment: A 
User’s Perspective. Photogrammetric Engineering and Remote 
Sensing 52: 397-399.

Tiani, A.M., Besa, M.C., Devisscher, T., Pavageau, C., 
Butterfield, R., Bharwani, S. Bele, M. (2015). Assessing 
Current Social Vulnerability to Climate Change: A 
Participatory Methodology. Working Paper 169. Bogor: Center 
for International Forestry Research.

Tijani, M.N., Kenneth, J., Yoshinar, H. (2004). Environmental 
impact of heavy metals distribution in water and sediment of 
Ogunpa River, Ibadan area, South Western Nigeria. Journal 
of Mining and Geology 40(1): 73 – 83. DOI: 10.4314/jmg.
v40i1.18811.

Tobore, A., Senjobi B., Ogundiyi, T., Samuel, B. (2021). 
Geospatial assessment of wetlands soils for rice production in 
Ajibode using Geospatial Techniques. Open Geosciences 13: 
310-320. https://doi.org/10.1515/geo-2020-0227.

Udo, E.J., Ibia, T.O., Ogunwale, J.A., Ano, A.O., Esu, I.E. 
(2009). Manual of soil, plant and water analyses. Lagos: Sibon 
Books Ltd 183 pp.

United Nations. (2008). World Urbanization Prospects: 
The Revision United Nations (Population Division of the 
Department of Economic and Social Affairs) New York.ESA/P/
WP/224,2012.

Uriah, L.A., and Shehu, U. (2014). Environmental risk 
assessment of heavy metals content of municipal solid waste 
used as organic fertilizer in vegetable gardens on the Jos Plateau, 
Nigeria. American Journal of Environmental Protection 3(6 – 
2): 1 – 13.

Walkley, A., and Black, I. A. (1939). An examination of the 
Degtjareff method for determining soil organic matter and a 
proposed modification of the chromic acid titration method. 
Soil Science 37:29 –38. DOI: 10.1097/00010694193401000-
00003.

Wali, E., Phil-Eze, P.O., Nwankwoala, H.O., Bosco-Abiahu, 
L.C., Emelu, V.O., (2019). Analysis of land use and land cover 
changes in the wetland ecosystem of Port-Harcourt metropolis, 
Nigeria. International Journal of Ground Sediment and Water 
9: 503-524.

Waswa, B. S., Vlek, P. L., Tamene, L. Okoth, P. F. (2012). 
Mapping land degradation patterns using NDVI as a Proxy: 
a case study of Kenya. Resilience of Agricultural Systems 
Against Crises (Tropentag, September 19-21 2012), Göttingen-
Kassel/Witzenhausen.

Wu, C.D., Cheng, C.C., Lo, H.C., Chen, Y.K. (2010). Application 
of SEBAL and Markov Models for Future Stream Flow 
Simulation Through Remote Sensing. Water Resource Manag. 
24(14): 3773–97. https://doi. org/10.1007/s11269-010-9633-9.

Weng, Q., and Yang, S. (2004). Managing the adverse thermal 
effects of urban development in a densely populated Chinese 
city. Journal of Environmental Management 70: 145-156.

Xiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y. 
(2006). Evaluating urban expansion and land-use change 
in Shijiazhuang, China by using GIS and remote sensing. 
Landscape and Urban Planning 75: 69-80. http://dx.doi.
org/10.1016/j.landurbplan.2004.12.005.

Yang, X., Zheng, X., Lv, L. (2012). A spatiotemporal model of 
land use change based on ant colony optimization, Markov chain 
and cellular automata. Ecol Model 233:11–19. doi:10.1016/j.
ecolmo del.2012.03.011.

Zhang, J., Niu, J., Bao, T., Buyantuyev, A., Zhang, Q., Dong, 
J., Zhang, X. (2015). Human-induced dry-land degradation 
in Ordos plateau, China, revealed by multi-level statistical 
modelling of normalized difference vegetation index and 
rainfall time series. Journal of Arid Land 6: 219–229. https://
doi.org/10.1007/s40333-0130203-x.

Tobore et al. / JJEES (2021) 12 (4): 326-336336


