
JJEES
Jordan Journal of Earth and Environmental Sciences

Estimation of Surface Soil Particles Using Remote Sensing-based 
Data in Al-Ghab Plain, Syria

Alaa Khallouf 1,2*, Sameer Shamsham2, Younes Idries3

Abstract

1. Introduction

Sustainable development as an overall goal usually deals 
with several issues at the regional and global levels involving 
land degradation, high food demand, water scarce, and climate 
change. Addressing these problems needs continuous and 
up-to-date soil information (McBratney, 2014; Zhang et al, 
2013). Soil texture affects tightly many physical and chemical 
soil characteristics such as water and ventilation features, 
soil porosity, its fertility status, drainage characteristics, 
etc. (Makabe et al., 2009; Akpa et al., 2014). Soil texture and 
soil organic matter content are regularly used as the most 
significant parameters of hydrological characteristics and 
soil Cation Exchange Capacity (CEC) prediction (Wösten et 
al., 2001; Seybold et al., 2005). Besides, soil texture is a strong 
indicator to anticipate the soil erosion hazard conditions 
and eroded soil amount (Le Bissonnais 1996; Warrington 
et al., 2009). Therefore, accurate and reliable soil texture 
maps are crucial needs for hydrological and environmental 
modeling, land management practices, and environment 
protection, particularly when budget, labor, and time are 
limited (Zhao et al., 2009). The traditional survey process 
has been subjected to many limitations; firstly, the changes 
in environmental conditions are not easy to observe, mainly 
when the processing of many variables works concurrently; 
secondly, the entire steps must be repeated for any updating 

process, that leads to ineffective soil survey updates (Zhu 
et al., 2010). Remote sensing data was used for the first 
time to predict soil properties in the 1960s (McBratney et 
al., 2003). Digital soil mapping (DSM), which means the 
spatial prediction of soil properties in unobserved locations 
using statistical assumptions, have increasingly been applied 
recently since their early development at the beginning of 
the 19th century (Webster and Oliver, 2007). DSM relies on 
defining the relationship between soil attributes with some 
terrain characteristics which are usually derived from the 
Digital Elevation Model (DEM) such as Slope, Aspect, 
Curvature, Length of slope (LS), and others, in addition 
to derived remote sensing indices from satellite images. 
This approach was significantly used during the past three 
decades in predicting soil properties and has been achieved 
required rapidness and accuracy (Chen, et al., 2008; D’Acqui 
et al., 2010). Many studies examined the relation between soil 
reflection of the visible and near-infrared bands (400-2500 
nm) and surface soil texture (Al-Abbas et al., 1972; Suliman 
and Post, 1988; Zhang et al., 1992; Sullivan et al., 2005). Liao 
et al. (2013) applied remote sensing data of Landsat7 ETM - 
digital number (DN) of six bands (Bands 1–5 and Band 7)- as 
covariates for estimation of surface soil particles distribution 
in the city of Pingdu lands, Shandong Province, China. 
Correlation analysis revealed that surface soil particles were 
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This study focuses on digital soil mapping and its role to predict topsoil texture particle distribution. The study was carried out 
by collecting 146 surface soil samples (0-30 cm) from Al-Ghab plain, Hamah governorate, and 40 environmental covariates 
were derived from Landsat 8 OLI, and Digital Elevation Model (DEM). The surface soil particle models were obtained by 
Multiple Linear Regression (MLR) via R programming software, SAGA-GIS, and ArcGIS. Statistical analysis and results 
demonstrate no outlier in the data. Normal distribution for all covariates was examined, where skewness and kurtosis values 
were highly varied and ranged from 2.398 to 4.1090, and -1.772 to 20.1603 respectively, indicating that some predictors 
are highly skewed. Therefore, Tukey’s ladder of power transformation was applied for all environmental predictors to be 
normally-distributed or close to normal distribution. All normal or close to normal data of environmental variables were used 
in MLR prediction models and cross-validation. Three MLR methods including forwarding selection, backward elimination, 
and stepwise selection were implemented for predictors selection. Relative importance also was calculated to estimate the 
contribution of each regressor in ML. The backward elimination method for the three soil texture particles sand, silt, and 
clay has the highest R2 values (31.3, 28.6, 45.5%) respectively, and with the lowest values of mean absolute error (MAE) Root 
Mean stander error (RMSE), so it is the best prediction method for soil particles the study area.  
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highly correlated with Landsat ETM data. Multiple Linear 
Regression (MLR) is one of the major statistical models 
that is commonly used to describe the relationship between 
environmental covariates and soil particles (Lagacherie et al., 
2008; Mitran et al., 2018). Al-Ghab Plain is a highly valuable 
agricultural area in Syria, where various strategic crops such 
as wheat, sugar beets, cotton, tobacco, sesame, sunflower, 
soybeans, olives, and vegetables are grown. Therefore, land 
use planning procedures require beneficial and accurate soil 
data. Thus, the main objectives of this study are: (i) setting a 
digital map of the spatial distribution of sand, silt and, clay 
in the Al-Ghab Plain area and, (ii) fitting the best model for 
estimating the distribution of soil particles.

existing geological map, a major part of the plain was covered 
by peat on the subsoil of gray plastic marl or white lime 
ooze. Gravels, sand, marls, and coquina are found in small 
parts in old riverbeds or lakeshore. White limestone and 
dolomite formations occur in the eastern border of the plain 
with basalts on the northeastern boundary (FAO, 1972). The 
Orontes river passes from south to north which is forming 
many terraces and irrigation channels. The climate of Al-
Ghab plain belongs to the Mediterranean climate which is 
described as cold and rainy winters, hot and dry summers 
with two transitional seasons (spring and fall) (Moses, 1978). 
The soil climate is classified based on USDA as Xeric for soil 
moisture and Thermic for soil temperature regime (Ilaiwi, 
1985).2. Material and Methods

2.1 Site description: 
2.2 Soil sampling and laboratory analyzing:

2.3. Remote sensing data and derived covariates:

Al-Ghab Plain is located in the northwestern of Hamah 
governorate in the middle of Syria (Figure 1) and it extends 
between 36º 19` 12`̀ 36º 23` 45`̀  E and 35º 44` 40 `̀ - 35º 16` 
34`̀ N. It covers about 477 km2 with altitude ranges between 
146-176 m above sea level (asl). Al-Ghab plain is described as 
one of the Pliocene lakes. At the end of the Pliocene period, 
vigorous movement occurring along the already existing 
faults formed the actual landscape, although the movement 
continued during the Quaternary period. According to the 

The study was conducted by collecting 146 surface soil 
samples (0-30cm) during 1-23/4/2020 (Figure 1), and their 
geographic locations were recorded by using the Global 
Positioning System (Garmin GPS, accuracy ± 5 m). The 
collected soil samples were air-dried, ground, and sieved 
through a 2mm sieve. The hydrometer method was used 
to estimate soil particle distribution (sand, silt, and clay as 
percentage) (Gee and Bauder, 1986).

To predict the relationship between surface soil 
distribution and the environmental predictors (variables) 
mainly topographic factors, hydrology, and vegetation 
cover indicators, in total 40 parameters were derived from 

Landsat8 OLI and Digital Elevation Model (DEM) but only 
37 parameters were convenient for predicting soil texture 
(Table.1). Firstly, the satellite image was downloaded 
from https://earthexplorer.usgs.gov/, its date 18/4/2020 
and re-projected, then bands reflectance was obtained. 

Figure 1. (a) Location of studied area to Syria, (b) soil samples distribution, (c) Location of the studied area to Hamah governorate
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The remote sensing imagery of Landsat8 OLI involves 
reflectance of bands (2to7), or some vegetation indices such 
as NDVI, SAVI, OSAVI, MSAVI, GS, etc…. Also, some 
transformations including principle component analysis PCA 
as PCA1 for reflectance bands 2,3,4; PCA2 for bands 5,6,7; 
and environmentally considered bands, finally tasseled cap 
transformation (brightness, greenness, and wetness). On the 

other hand, a 30 m-resolution DEM (Ministry of Economy, 
Trade, and Industry of Japan and the United States National 
Aeronautics and Space Administration, 2009), was sink-
filled and SAGA-GIS was used to derive 13 environmental 
parameters (Table.1) using the basic terrain analysis, terrain-
hydrology analysis, and morphometry analysis (Olaya, 
2006).

Table 1. input environmental variables and derived covariates

Parameters Description Formula Reference

Landsat8 band2 blue band (B)

Landsat8 band3 green band (G)

Landsat8 band4 red band (R)

Landsat8 band5 near infra-red band (NIR)

Landsat8 band6 short wave infra-red1 band (SWIR1)

Landsat8 band7 short wave infra-red2 band (SWIR2)

PCA1 principle component analysis Derived from of bands 2,3,4 Frazier and Cheng, 1989

PCA2 principle component analysis Derived from of bands 5,6,7 Frazier and Cheng, 1989

PCA3 principle component analysis Derived from of bands 2,3,4,5,6,7 Frazier and Cheng, 1989

SR Simple ratio NIR/R Malthus et al,1993

DVI Difference Vegetation Index NIR-R Foody et al., 2001

OSAVI Optimized Soil Adjusted Vegetation Index (NIR -R) / (NIR + R + 0.16) Nikolakopoulos, 2003

SAVI Soil Adjusted Vegetation Index [NIR-R)/(NIR+R+L)] × (1+L) Pettorelli et al., 2005

MSAVI Modified Soil Adjusted Vegetation Index [NIR-R)/(NIR+R+L)] × (1+L) Bannari et al 1995

TVI Transformed Vegetation Index (SWIR1-R)/(SWIR1+R) Bannari et al 1995

MNDVI Normalized Difference NIR/MIR Modified 
Normalized Difference Vegetation Index (NIR-MIR)/(NIR+MIR) Jürgens,1997

GVI Green Vegetation Index -0.29 (G) -0.56(R)+0.6(IR)+0.49(IR) Leblon, 1993

OI Simple Ratio Red/Blue Iron Oxide R/B Hewson et al.,2001

SRRed/NIR Simple Ratio Red/NIR Ratio Vegetation-
Index R/NIR Bannari et al 1995

SCRI Surface clay index SWIR2/SWRI1 Bannari et al 1995

SARVI2 Soil and Atmospherically Resistant 
Vegetation Index2 2.5(NIR-R)/(1+NIR+6R-7.5B) Heute et al,1997

Wetness The humid band derived from tasseled cap Bahtti et al., 1991

Brightness Brightness derived from tasseled cap Bahtti et al., 1991

Greenness Greenness band derived from tasseled cap Bahtti et al., 1991

ASPECT facing direction Castro-Franco et al,2018

GENERALCUR General curvature Ließ et al,2012

LONCUR Long curvature Ließ et al,2012

LSFACTOR Length of slope steepness Castro-Franco et al,2018

PROFILECUR Profile curvature Ließ et al,2012

PLANCUR Plan curvature Ließ et al,2012

MRVBF Multi-resolution Valley Bottom Flatness 
Index Dobarco et al,2016

MRRTF Multi-resolution of ridge top flatness index Dobarco et al,2016

FLOWLINE Flow line Zevenbergen et al.,1987

MAXCUR Maximum curvature Ließ et al,2012

TWI Topographic Wetness Index Dobarco et al.,2016

SLOPE Slope Castro-Franco et al, 2018

DEM Digital Elevation Model Pinheiro et al, 2018
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2.4. Descriptive statistics of environmental covariates and data 
transformation:

2.5.  Multiple Linear Regression predictive model:

2.7. Relative importance of environmental variables:

2.8. Map generating:

2.6. Model fitting and validation: 

R programming software was used to calculate the 
criteria of descriptive statistics for both soil particles and 
environmental predictors. It includes the mean, minimum, 
maximum, standard deviation (SD), coefficient of variation 
(CV), skewness, and kurtosis. The CV% is usually used to 
explain the variance of each soil characteristic and predictors.  
The CV% was classified into: high variance (% CV> 35%), 
medium variance (15< %CV <35), low variance (% CV <15) 
(Wilding, 1985). The normal distribution test was applied for 
all variables by plotting histogram test companion package), 
skewness, and kurtosis were determined by using (moments 
package). For non-normal distributed variables, Tukey`s 
ladder of power transformations was applied (Mondejar and 
Tongco, 2019) by using the equation: 

determination (R2), the mean absolute error (MAE), and the 
root mean squared (RMSE) as following equations:

where ŷi: is the predicted value, yi:  is the observed value, 
y :̀  is the mean of observed values, and n:is the number of 
observed points.

where: Y :̀ dependent variable, β0: constant, Xj the matrix 
of the input independent covariates, and  is the unknown 
coefficients for the involved predictors (McDonald, 2014).

Three methods of MLR involving Backward elimination, 
Forward Selection, and stepwise regression were applied in 
SAGA-GIS and a 95% confidence level was used for fitting 
the estimation model. All selected methods of MLR were 
subjected to Kolmogorov-Smirnov (Lilliefors) test.

The predictive model’s performance was examined 
via cross-validation technique [5-fold method in R (Carte 
Package)] (Kuhn and Johnson, 2013), since the validation 
dataset was unavailable, in addition to the limited soil 
samples number (Ballabio et al., 2016). The accuracy of 
models was determined by calculating the coefficient of 

Multiple Linear Regression predictive (MLR) has been 
widely utilized for estimating soil characteristics based on 
environmental covariates, where the correlation between 
predictors was examined. MLR equation is defined as:

Relative importance is a topic that has seen a lot of 
interest in recent years, particularly in applied work. 
Relative importance (RI) is described as “the quantification 
of individual regressor’s part to a multiple regression 
model” (Gromping, 2006). RI is typically implemented as 
part of the model-building procedure, e.g., forward variable 
selection or backward elimination, …etc.  It is an alternative 
to the multiple regression techniques and it addresses the 
multi-collinearity problems and also helps to calculate the 
importance rank of variables. It helps to answer “ Which 
variable is the most important and rank variables based 
on their contribution to R-Square”. RI was obtained using 
R (Relaimpo package) and its values are calculated as 
percentages of 100% (Mondejar and Tongco, 2019).

Soil texture maps were generated based on the best MLR 
predicting model by using R (Automap package) and saved 
all maps as a raster (FAO,2018).

The determination coefficient (R2) is used as a function 
of goodness of fitting linear models for cross-validation and 
it is expressed as:

Where λ is the power used to convert the factor closer 
to the normal distribution (Mangiafico, 2016; Scott, 2018).
in this study λ values were (-2, -1, -1/2, 0, 1/2, 1, 2) (Tukey, 
1977)

The transformation was performed for non-normal 
distributed variables for the Value of skewness to be close to 
zero and Kurtosis ranges between 1 to3. 

...................................................................... (1)

................................................................... (2)

....................................................................... (3)

....................................................................... (4)

....................................................................... (5)

3. Results and discussion:
 3.1. Descriptive statistics of environmental variables:

The former step in this study was examining data 
including descriptive statistics and transformation. Table.2 
shows the summary statistics for untransformed data. The 
results showed high CV% and it ranges between 1.41 to 
284.08%, with medium CV% for soil particles sand, silt, 
clay (21.5, 30.6, 18.3%) respectively, while CV% values 
were high for OSAVI, slope, LS factor, and Aspect (284.08, 
245.46,104.29, and 100.63%) respectively. On the other 
hand, skewness, and kurtosis values range from 2.39 to 4.10; 
-1.77, and -20.16 respectively, these results imply that some 
predictors are highly skewed, and this is not appropriate to 
the normal assumption. It is obvious in Table.2 that the three 
soil particles were normally distributed, since skewness 
values for soil particles as a flowing: -0.154, 0.504, 0.762, and 
kurtosis values were -0.69, 0.768, 0.593 respectively, whereas 
results of some predictors were non-normally distributed 
based on histogram test and skewness and kurtosis values. 
Therefore, Tukey`s ladder of power transformation was 
applied to transform the environmental predictors into 
normally or close to a normal distribution as shown in Table. 
3. The histogram, skewness, and kurtosis tests were applied 
for transformed data of non-normally distributed predictors.
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Parameters Minimum Maximum Mean Standard 
Deviation CV% Skewness Kurtosis

Sand % 22.0000 57.0000 38.874 7.9929 21.5 -0.154 -0.69

Silt% 10.0000 52.0000 27.361 10.1320 30.6 0.504 -0.77

Clay% 18.0000 62.0000 33.765 8.9702 18.3 0.762 0.59

Landsat8 band2 0.0033 0.0061 0.004 0.0005 2.24 0.995 2.21

Landsat8 band3 0.0166 0.0279 0.020 0.0020 4.47 0.703 1.12

Landsat8 band4 0.0325 0.0698 0.044 0.0069 8.31 0.791 1.20

Landsat8 band5 0.0317 0.1267 0.057 0.0156 12.49 0.966 2.35

Landsat8 band6 0.0350 0.1382 0.072 0.0222 14.90 0.098 -0.54

Landsat8 band7 0.0288 0.1061 0.061 0.0200 14.14 0.151 -0.97

PCA1 0.0282 0.0484 0.035 0.0036 6.00 0.736 1.12

PCA2 0.0567 0.2047 0.110 0.0319 17.86 0.120 -0.52

PCA3 0.0739 0.2277 0.129 0.0328 18.11 0.149 -0.43

SR 0.2491 0.2725 0.260 0.0037 6.08 -0.022 0.36

DVI 1314.44 1324.294 1319.367 2.5066 158.32 -0.056 -1.09

OSAVI 1244.56 1278.028 1261.294 8.0699 284.08 0.003 -0.91

SAVI 0.0000 0.5403 0.327 0.0904 30.07 -0.620 0.74

MSAVI 0.1058 0.6499 0.378 0.1059 32.54 -0.389 0.09

TVI -0.0071 0.3780 0.218 0.1052 32.43 -0.622 -0.66

MNDVI 0.0000 0.3050 0.042 0.0568 23.83 1.983 5.25

GVI 0.0067 0.0948 0.040 0.0200 14.14 0.029 -0.77

NDVI 0.0000 0.3682 0.112 0.0698 26.42 0.722 1.24

MVI 0.0000 0.3502 0.141 0.1058 32.53 0.072 -1.18

ASPECT 0.0000 360.0000 118.055 118.4584 100.63 0.620 -0.87

GENERALCUR 0.0000 0.0089 0.001 0.0018 4.24 2.032 3.71

LONCUR 0 0.0066 0.001 0.0011 3.32 1.947 4.88

LSFACTOR 0 25.8273 10.95 11.502 104.29 0.229 -1.77

PROFILECUR 0 0.0034 0 0.0006 2.45 2.069 5.78

PLANCUR 0 0.1333 0.007 0.0204 14.28 4.109 20.16

MRVBF 5.5045 79.6704 57.786 20.4601 452.3 -0.834 -0.39

MRRTF 0.0872 8.9686 6.697 2.6469 162.69 -0.983 -0.19

FLOWLINE 0.6381 1.0385 0.968 0.0846 29.09 -1.768 3.13

MAXCUR 0.8736 1.1477 1.115 0.0818 28.60 -2.398 3.95

TWI 0.301 1.0404 0.523 0.1816 42.61 0.094 -0.84

SLOPE 0 0.9989 0.342 0.2706 245.46 -0.138 -1.2

DEM 0.3094 0.3152 0.311 0.001 3.16 0.711 1.14

OI 0.3179 0.8751 0.492 0.101 31.78 0.806 1.19

SRRed/NIR 0.4513 1.0142 0.655 0.1527 39.08 0.874 -0.29

VARIgreen 0 0.2188 0.067 0.0415 20.37 0.695 1.2

SCRI 0 0.4669 0.136 0.1104 33.23 0.898 0.38

SARVI2 0.285 0.2986 0.29 0.0018 4.24 1.277 5.84

Wetness -0.06426 0.008739 -0.02631 0.018262 13.51 -0.075 -1.007

Brightness 0.087 0.2293 0.133 0.0275 16.58 0.313 0.18

Greenness 0 0.0006 0 0.0002 1.41 -0.352 -0.89

Table 2. Descriptive statistics of environmental variables

The results are shown in Table.3 reveals that all transformed data of predictors are normal or near to normal distribution, and values of skewness and kurtosis 
range -0.834 to 0.995 and -1.204 to 2.206 respectively. Consequently, all environmental predictors were used in MLR modeling with normal or close to normal 
distribution.
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Table 3. The transformation data for some non-normally distributed using Tukey’s method

Table 4. Cross-validation of the selected methods of MLR

soil
variables

Trans formation- 
mode Min Max Mean Standard 

Deviation CV% Skew Kurtosis

band3 Log(x) 0.017 0.028 0.02 0.08 3.65 0.703 1.115

band2 Log(x) 0.003 0.006 0 0.06 4.72 0.995 2.206

SR X2 0.249 0.273 0.26 0.07 6.23 -0.022 0.361

PCA1 Log 0.028 0.048 0.03 0.07 5.24 0.736 1.115

SAVI Log(x) 0 0.54 0.33 0.09 12.25 -0.62 0.744

General curvature Log(x) -2.653 -2.051 -2.5 0.2 4.65 0.69 -1.036

Profile-curvature -1/x -3.654 -2.465 -2.96 0.16 12.58 -0.473 2.125

Plan curvature Log(x) -1.722 -0.875 -1.37 0.23 15.26 0.809 0.785

MRVBF Log(x) 5.504 79.67 57.79 20.46 48.62 -0.834 -0.391

Max- curvature -1/x 0.273 0.332 0.33 0.02 25.62 -0.407 2.01

TWI Log(x) 0.301 1.04 0.52 0.18 3.69 0.094 -0.838

SLOPE Log(x) 0 0.999 0.34 0.27 17.82 -0.138 -1.204

DEM Log(x) 0.309 0.315 0.31 0.02 6.36 0.711 1.142

Greenness Log(x) 0 0.001 0 0 10.28 -0.352 -0.892

3.2 Multiple linear regression modeling:

3.3 Cross-validation of MLR selected methods

Table.3 shows the MLR results for the three methods 
that were chosen namely forward selection, backward 
elimination, and stepwise selection. All selected methods 
of MLR were subjected to Kolmogorov-Smirnov (Lilliefors) 
test. Homoscedasticity and normality test of residuals 
were determined to confirm the homogeneity of variance 
assumption (Heil and Schmidhalter, 2017), where the 
Lilliefors value is more than 0.05 that indicates enhancing in 
normality and stability of variance for both independent and 
dependent variables (Tsai et al., 2017), minimizing errors, 
and unbiased estimation (Zhang et al., 2013).

Cross-validation of selected methods was carried out and 
R2, MAE, RMSE, Homoscedasticity, and normality tests 
for residuals including skewness, kurtosis, and Lilliefors 
were calculated for estimating the accuracy of the model’s 
performance. Homoscedasticity and normality tests of 
residuals were determined to confirm the homogeneity of 
variance assumption (Heil and Schmidhalter, 2017). The 
results in Table.4  show that the backward elimination method 
has achieved the best model performance in comparison 

with forwarding selection and stepwise methods, where 
the MAE, RMSE values were less than other methods in 
all soil particles predicted models. However, the backward 
elimination method has the highest R2 for sand, silt, and clay 
(31.3, 28.6, 45.5%) respectively. Figure 2 illustrates the scatter 
plots of residuals and predicted values of homoscedasticity 
test, it is clear that the homoscedasticity was not broken by 
any all three MLR methods for soil texture particles, since 
linearity theory was met having no identifiable pattern and 
the residuals randomly scattered, in addition to the almost 
of residuals were symmetrically clustering towards the 
center of the plot. Graphically, Figure 3 explains clearly the 
test of normality of residuals for three MLR methods where 
most of the points are placed almost directly either below 
or above closely to the reference line with no evidence of 
outlier’s presence (Mondejar and Tongco, 2019). It is also 
obvious that the most of points of the sand regression models 
were located very close to the reference line. These results 
were statistically confirmed in Table.4, where the regression 
models of sand particles were the least in both skewness and 
kurtosis values. Table 4 also shows that the distribution of 
the residuals was statistically near to normal distribution 
based on the Lilliefors normality test.

Soil particle Regression model Predictors 
number MAE RMSE R2

Residuals normality

skewness kurtosis Lilliefors

sand

Forward 2 5.9 7.11 20.2 -0.215 -0.815 0.96

Backward 10 5.4 6.6 31.3 -0.192 -0.49 0.57

Stepwise 2 5.9 7.11 20.2 -0.215 -0.851 0.96

silt

Forward 2 7.3 8.85 23.1 0.479 -0.428 0.97

Backward 6 7.05 8.52 28.6 0.322 -0.365 0.7

Stepwise 2 7.3 8.85 23.1 0.479 -0.428 0.97

clay

Forward 3 5.71 7.21 34.8 0.344 -0.089 0.055

Backward 14 5.79 7.01 45.5 0.283 -0.281 0.073

Stepwise 3 5.71 7.21 34.8 0.344 -0.089 0.055
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Figure 2. Residuals plots of MLR models based on selection methods 
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Figure.2 Residuals plots of MLR models based on selection methods  
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Figure 3. QQ plot of residuals for MLR selected methods
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Figure.3 QQ plot of residuals for MLR selected methods 
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3.4 Relative importance of environmental covariates:
Figure 4 demonstrates that TWI, PCA1, SARVI, MAX-

CUV, MRVBF, SCRI, OSAVI, MSAVI, Wetness, and 
NDVI were the most significant environmental covariates 
for predicting surface soil texture particles. In the sand 
predicting model, 10 predictors for the backward elimination 
method, since TWI, PCA1, SARVI, SRRED/NIR, and slope 
were the most important predictors with RI values 18.47, 
15.4, 12.79, 11.32, and 9.6 % respectively. These results 
agreed with Mehrabi-Gohari et al. (2019) results since TWI 
was the most significant auxiliary variable to predict sand 
fraction distribution. Whereas Mondejar and Tongco (2019) 
found that stream proximity index (SPI) was the most crucial 
variable affected in sand fraction prediction. In Figure 4, 
the silt regression model is predicting silt values by using 
6 predictors.  Similarly, TWI, MAX-CURV, and MRVBF 

were the most critical variables for silt regression predicting 
models. In many studies, TWI and MrVBF were considered 
as a significant predictive variable in the prediction model 
of the silt fraction (Mehrabi-Gohari et al., 2019; Jafari 
et al., 2012), while Mosleh et al. (2016) reported steam 
power index, and plan curvature were the most auxiliary 
variables to silt prediction. For the clay predictive model, 
Figure 5 demonstrates that 14 environmental variables were 
considered in the predictive model since GSAVI, MSAVI, 
and DVI respectively were found the most significant 
variables of clay fraction prediction. These results agreed 
with Mehrabi-Gohari et al. (2019) results. Topography 
factors can influence soil physicochemical properties 
(soil depth, texture, and mineral contents), incoming solar 
radiation, precipitation and affect crop production. As an 
increased topography/elevation significantly increased soil 
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Figure 4. Relative importance of environmental covariates for soil 
texture prediction

Figure 5. Relative importance of environmental covariates for soil 
texture prediction

Figure 6. Sand spatial distribution

Figure 7. Silt spatial distribution

Figure 8. Clay spatial distribution

3.5. Predictive soil texture maps:  

moisture, precipitation, soil significantly lower at the higher 
elevations, whereas bulk density, pH, and soil temperature 
were significantly lower at higher elevations (Abate and 
Kibret, 2016).

Figures 6, 7, and 8 show the spatial distribution of sand, 
silt, and clay fraction based on the backward estimation 
predictive model. Sand content ranges from 20.7 to 59.6%, 
with a high concentration in the west northern part of Al-
Ghab plain. Silt also ranges from 11.2 to 46.9% since most 
northern lands are high content of silt. The high content of 
clay (43.4-60.7%) is in the south and southeastern lands of 
Al-Ghab plain.
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Figures 5, 6, and 7 show the spatial distribution of sand, silt, and clay fraction based on the 

backward estimation predictive model. Sand content ranges from 20.7 to 59.6%, with a high 

concentration in the west northern part of Al-Ghab plain. Silt also ranges from 11.2 to 46.9% 

since most northern lands are high content of silt. The high content of clay (43.4-60.7%) is 

in the south and southeastern lands of Al-Ghab plain. 

                                                                     Figure. 5 Sand spatial distribution                            

Figure. 6 Silt spatial distribution 
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4. Conclusion:  

Soil texture is one of the most crucial soil properties because it affects many soil functions 

involving the availability of water, nutrients, and many physical soil properties. In this study, 

40 environmental RS-based covariates were derived from Landsat 8 OLI and DEM with a 

spatial resolution of 30 m. Multiple linear regression was used to determine the relationship 

between soil texture particles and environmental variables. The results revealed that 

4. Conclusions: 

Soil texture is one of the most crucial soil properties 
because it affects many soil functions involving the 
availability of water, nutrients, and many physical soil 
properties. In this study, 40 environmental RS-based 
covariates were derived from Landsat 8 OLI and DEM with 
a spatial resolution of 30 m. Multiple linear regression was 
used to determine the relationship between soil texture 
particles and environmental variables. The results revealed 
that backward elimination was the best predictive model for 
the three soil particles (sand, silt, and clay) with the highest 
R2 values (31.3, 28.6, 45.5%) respectively, and with the 
lowest values of MAE and RMSE. On the other hand, TWI, 
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