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Abstract

1. Introduction

Climate change is one of the major problems facing the 
world because it is foretelling climate patterns changes and 
a higher frequency of risky weather events. In recent years, 
the frequency and severity of droughts in the Mediterranean 
region have increased due to global warming (IPCC, 2013; 
Trenberth et al., 2014). Generally, climate change has a 
potential impact on agriculture, coastal areas, biodiversity, 
urban systems, society, water, and health sectors (FAO, 2008). 
In the agricultural sector, climate-change-related risks are 
represented by higher temperatures, rainfall decreases, the 
shift in the rainy season and seasonal alterations, heatwaves, 
and extreme events especially heavy rainfall and droughts 
(WB, 2021). Drought is a disastrous natural phenomenon 
that has negative impacts on plants and especially under 
the changing climate, it becomes more frequent and severe 
(Seneviratne et al., 2012). Drought has destructive effects on 
socioeconomic, plants, and the environment because it leads 
to insufficient precipitation, high evapotranspiration, and 
over-exploitation of water resources (Yurekli and Kurunc, 
2004; Bhuiyan et al., 2006; García-Caparrós et al., 2019). 
Drought effects can be classified as direct and indirect 
(Van Lanen and Peters, 2000). Direct impacts of drought 
are the results of interactions among water deficiencies and 
environmental, and socio-economical components while 
indirect are a secondary result of water deficiency and are 
often occurred far away from the drought-impacted region 
(UNDRR, 2021).

Generally, drought can be categorized into three 
basic types in terms of measuring drought as a physical 
phenomenon; meteorological, agricultural, or hydrological 
drought (Wilhite and Glantz, 1985). Meteorological drought 
is a prolonged abnormal dryness period (compared to 
normal average precipitation), agricultural drought links 
meteorological variables (e.g., precipitation) to agricultural 
impacts such as soil water deficits while hydrological drought 
is associated with the influence of rainfall periods on the 
surface or groundwater supply (NDMC, 2021). In arid and 
semi-arid land, functional landscapes and their associated 
vegetation are ultimately dependent on water availability, 
which significantly affect vegetation distribution (Tardieu et 
al., 2018). Drought stress in plants (e.g., Thymus citriodorus) 
normally plants moisture content (dehydration) followed by 
a reduction in the metabolism process and photosynthesis 
and consequently plants death (Tátrai et al., 2016). However, 
the ability of plants to survive under stressed conditions 
depends on plant species, growth stage, duration, and the 
intensity of water deficit (Blum, 2017). Plant tolerance to 
abiotic stress such as water stress is unpredictable because 
of the complicated interactions between stress factors and 
plant molecular, biochemical, and physiological components 
associated with growth and development processes (Razmjoo 
et al., 2008). 

Medicinal plants are the major sources of numerous 
valuable chemicals and/or drugs worldwide. According to 
the International Union for Conservation of Nature (IUCN) 
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This review addresses the growth and development of medicinal plants under arid land conditions and the potential use 
of remote sensing technologies to map their distribution, as well as morphological and physiological responses in Arid 
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plant physiological variables and canopy cover including chlorophyll, canopy density, gas exchange (red, 600-700 nm, near-
infrared spectrum, 700-1100 nm) as well as water status (shortwave infrared, 1300-2500 nm). Surface reflectance data within 
the shortwave infrared bands (water bands) revealed significant differences between well-watered and drought-stressed 
plants. However, the moderate spatial resolution (Sentinel-2: 20 m, Landsat: 30 m) for the space-born free sensors and the 
need for a cloud-free sky could be limitations. Overall, vegetation indices derived from remotely sensed data are a useful 
approach for estimating the physiology of plants (medicinal plants) especially those under drought stress.
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and the World Wildlife Fund (WWF), about 50,000–80,000 
flowering plants are used because of their medicinal values. 
In Europe, over 1300 medicinal plants are used, especially 
those from the wild sources which account for 90% of the 
total medicinal plants (Hao, 2019). Jordan is home to an 
abundance of flora and fauna, about 2978 plant species 
belonging to 120 families and 719 genera are recorded in 
Jordan (Abdelhalim et al., 2017). In addition, 20% of the 
total flora species in Jordan are classified as medicinal 
plants (Abdelhalim et al., 2017). High demand for medicinal 
plants coupled with unpredictable environmental stressors 
such as low rainfall has led to a significant reduction in their 
abundance worldwide. Cultural practices such as planting 
method and date, fertilizer application, irrigation regimes, 
and harvesting should be optimized to increase the growth 
and productivity of medicinal plants (Tanga et al., 2018). 
Efforts to conserve wildlife flora including medicinal plants 
have been observed recently including research studies 
focused on the growth (e.g soilless culture), physiology, 
production (yield, phenolic compounds, and oil content), and 
conservation of those plants (Al-Karaki and Othman 2009; 
Leskovar and Othman, 2016; Sharma et al., 2020). 

Management and monitoring of wild plants including 
medicinal ones require frequent and consistent assessment 
of the canopy status and health over time. The main health 
indicators are morphology and physiological variables 
including chlorophyll contents, gas exchange [photosynthesis 
(Pn), transpiration (E), vapor pressure deficit (VPD), and 
stomatal conductance (gs)] as well as plant development 
and yield (Tahat et al., 2020). These morpho-physiological 
variables can provide accurate information about the plant 
carbon assimilation rate, leaf water level (Othman et al., 
2014a; Tadros et al., 2021), plant nutrition, fruit quality, and 
consequently their health (Al-Ajlouni et al., 2017; A'saf et 
al., 2020; Ayad et al., 2018; Alsmirat et al. 2018; Leskovar 
and Othman, 2018, 2021; Tahat et al., 2020). However, these 
methods of assessment are time-consuming, labor intensive, 
and expensive. In addition, the distribution of some wildlife 
flora could be not accessible. Another possible alternative to 
assess plant health is through remote sensing techniques (Al-
Kofahi et al., 2019; Othman et al., 2014b, 2021; Tadros et al., 
2020). Remote sensing has potentially assessed chlorophyll 
content (Othman et al., 2019), canopy density (Othman and 
St. Hilaire, 2021; Tadros et al., 2020), gas exchange and 
water status (Othman et al., 2014b, 2015), and geographic 
distribution (Al-Bakri et al., 2011). Remotely sensed data are 
providing an upscale view of the land and a spatiotemporal 
context to measure drought impacts (Hazaymeh and Hassan, 
2017). In addition, vegetation indices derived from space-
borne sensors (e.g., Landsat and MODIS) such as Normalized 
Difference Vegetation Index (NDVI) and the Vegetation 
Condition Index (VCI) have been successfully linked to 
chlorophyll content and water content in the plants (Rousta et 
al., 2020). In this review, we evaluated the usefulness of using 
the remote sensing approach as an alternative for evaluating 
medicinal plants' morpho-physiological responses under 
drought conditions.

2. Evaluation of Eco-physiological Parameters of 
Medicinal Plants

In the developing world, local communities depend 
on traditional medicine for primary health care (Jeelani 
et al. 2018). In addition, developed countries heavily use 
medicinal plants for their pharmaceutical products (Chapman 
and Chomchalow, 2005). Medicinal plants have several 
phenolic and antioxidant compounds which used to support 
human health and cure some diseases. In Jordan, several 
medicinal plant species are native to Eastern and Northern 
rangelands (Badia) (Oran and Al-Eisawi, 2015). More than 
49 plant families and 120 plant species found in Jordan are 
used by neighborhood people for medical purposes (Atta and 
Alkofahi, 1998). However, uncontrolled grazing and frequent 
drought periods in the last decade reduced their numbers 
(Oran and Al-Eisawi, 2015). Therefore, research studies that 
focus on improving the tolerance of the medicinal plant to 
harsh conditions as well as controlling grazing intensity are 
essential for the potential sustainability of those plants. 

Abiotic, and biotic (soil microorganisms) factors can 
significantly affect medicinal plant metabolite biosynthesis. 
Abiotic stresses such as temperature extremes and water 
stress can negatively affect the physiology and chemical 
composition of plants, which as a result induce abnormalities 
in medicinal plant metabolic processes such as growth, 
photosynthesis performance, and yield (Zaid et al., 2021). 
Optimal environmental conditions tend to increase medicinal 
plant biomass rather than synthesizing secondary metabolites 
(Pavarini et al., 2012). Postharvest processing can also lead 
to an irreversible quality loss of medicinal plants (Tanga et 
al., 2018). Therefore, finding proper management practices 
to guarantee high plant growth, productivity and quality are 
critical for the medicinal plants industry. In this context, 
management practices including irrigation, fertilization, and 
pest control required frequent assessment and evaluation 
during the growing season to sustain plant health and 
productivity. To assess the growth performance in response 
to those cultural practices (irrigation, fertilization, pest 
management) several plant-base and soil-base measurements 
have been recommended including water status (e.g. midday 
stem water potential (Ψsmd), relative water content) and 
chlorophyll content (Othman et al., 2014b, 2015). 

Plant-based measurements such as midday stem water 
potential, relative water content, gas exchange (Pn, gs, E, 
VPD, respectively), and leaf pigments are viable approaches 
to assess the physiology of plants which depict their health 
status (Jones, 2004; Khasawneh et al., 2021; Leskovar and 
Othman, 2019; Othman and Leskovar, 2018, 2019). This 
is because many features of the tree’s physiology react 
immediately to changes in tree tissues including water status 
(Jones, 2004). For example, Othman et al., (2014a) reported 
that under deficit water stress, Ψsmd and gas exchange were 
significantly lower and resulted in lower growth rate and yield 
compared to non-water-stressed plants. Although total soluble 
sugars and proline concentration in chamomile (Matricaria 
chamomilla L.) was similar across water deficit regimes, the 
total chlorophyll concentration was significantly reduced 
in water deficit plants (55% of field capacity) compared to 
control (100% field capacity) (Pirzad et al., 2011).
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 Chlorophyll and carotenoids (carotenes and xanthophyll) 
are the major pigments of green leaves (Gitelson et al., 
2002; Li et al., 2018). Pigment concentration inside the 
leaves potentially reflects the physiological performance of 
plants (Gamon and Surfus, 1999; Blackburn, 2007). This is 
because leaf pigments (chlorophyll, and anthocyanin) level 
in the leaves could act as a photoprotective mechanism that 
mitigates water deficit impact (Gamon and Surfus, 1999; 
Gori et al., 2021). Chlorophyll fluorescence (Fv/Fm) is a leaf-
level physiological measurement that is used to study the 
performance of chlorophyll pigments under stress such as 
drought (Guidi et al., 2019). The decrease in Fv/Fm value is 
an indicator of low performance of photosynthetic pigments 
specifically, photosystem II (PSII) efficiency (Guidi et al., 
2019). However, chlorophyll fluorescence measurements 
(re-emitted light from PSII) can interfere with the sunlight 
and thus many early systems had to be used in darkness 
and/or highly controlled light environments and it remains 
stable under mild and moderate drought stress and shows 
a significant decline only under severe drought conditions 
(Othman et al., 2014a). Gas exchange also is used in assessing 
plant performance including those studies focusing on plant 
growth and productivity as well as fruit quality (Leskovar 
and Othman, 2021; Kasaweneh et al., 2021). Gas exchange 
variables (Pn, gs, and E) normally decreased in parallel 
with increased stressors such as water deficit and nutrient 
deficiency (Ayad et al., 2018). 

Water status is one of the most important factors limiting 
medicinal plant performance, especially those grown in an 
arid environment (Khorasaninejad et al., 2010; Pirzad et al., 
2011). For example, drought stress significantly reduced the 
growth rate, essential oil, and yield of mint (Mentha piperita 
L.) compared to those grown under 100% field capacity 
(Khorasaninejad et al., 2010). Low soil moisture reduces 
stomatal conductance, total lipid content, photosynthetic 
capacity, chlorophyll content, transpiration, and the total dry 
matter (Guerfel et al., 2008; Grams et al., 2007; He et al., 
2007; Warren et al., 2007; Damour et al., 2009; Arunyanark 
et al., 2008). At moderate drought, Pn decreased slightly 
because of the reduction of stomatal aperture that interacts 
with CO2 diffusion as well as the intercellular CO2 (Ci) inside 
the stomata; stomatal limitation effect (Cifre et al., 2005). 
However, at severe water deficits, Pn further declines and 
Ci increases indicating that non-stomatal limitations become 
significant (Tezara et al., 1999). Othman et al (2014a) 
screened leaf-level physiological changes that occurred 
during cyclic irrigation to determine parameters that best-
represented changes in plants; the physiological variables 
included midday stem water potential (Ψsmd), relative water 
content (RWC), the osmotic potential at full turgor (π), leaf 
area ratio (LAR), gas exchange (Pn, gs, and E) chlorophyll 
content and fluorescence (Fv/Fm). They found that Ψsmd was 
the best leaf-level physiological response to detect moisture 
status in plants. Although the study was on woody trees, a 
similar trend was found in medicinal plants (Kalamartzis et 
al., 2020). For example, water deficit stress increased leaf 
temperature, Ψsmd, gas exchange parameters, and dry herb 
yield of Ocimum basilicum (Kalamartzis et al., 2020).

Although physiological measurements are a reliable 

source to assess plant health, the amount of time involved 
in data collection and the difficulties of automation of 
those instruments could be critical limitations to using 
ground physiological measurement to upscale the response 
to a large scale (Jones, 2004; Qarallah et al., 2021). In 
addition, physiological variables are at the leaf-level scale, 
which might be not representative of the whole tree's status 
(Othman et al., 2021). For example, high-performance 
liquid chromatography is usually used to measure pigment 
concentration inside the leaf, but the extraordinary cost and 
extraction time, along with the necessity of leaf destruction, 
limit its usage (Gamon and Surfus, 1999). Midday stem water 
potential equipment (pressure chamber) is not automated 
which requires the person to be onsite, requires leaf 
destruction, and might not be safe because of pressurized 
gas inside the instrument. Given that leaf-level physiological 
measurement is not easy, to upscale to a large scale, finding 
another alternative to estimate plant health is a critical issue 
for the plants in general and the medicinal plants' community 
specifically.

3. The role of remote sensing in assessing medicinal plants 
under drought conditions 

The remote sensing approach involves the acquisition of 
information about an object without being in direct contact 
with it (Jensen, 2005). This technique enables researchers 
to collect information about plants in rugged topography 
places that are not accessible for plant-based measurements 
(Othman, 2014). Remote sensing is a promising approach 
for detecting and predicting plant morphological and 
physiological traits such as chlorophyll content, canopy 
density, and water status (Othman et al., 2014b; Santos et 
al., 2008). These techniques can detect, predict, and scale 
up leaf-level physiological responses to large areas without 
destroying leaves or plants (Ormeci et al., 2009). Multi-
spectral satellite imagery can provide information covering 
large areas, while aerial photography with unmanned aerial 
vehicles (UAV) allows us to collect comprehensive biometric 
information from sites under investigation (Table 1). UAV 
created orthophoto with high quality that allowed confidently 
interprets the medicinal plants' communities during different 
growth stages including flowering (Fadeev et al., 2019). The 
combined use of multispectral aerial and satellite imagery 
and the high spatial resolution of UAV photography scaled 
up the vegetation (e.g., medicinal plants) in significant 
areas and accelerated the work in large areas (Fadeev et 
al., 2019; Qarallah et al., 2021). The age of an endangered 
medicinal and aromatic plant species Valeriana jatamansi 
was successfully identified using field hyperspectral remote 
sensing and machine learning techniques. This combined 
approach provides a scientific way for harvesting this plant 
at its optimum age avoiding its wastage (Kandpal et al., 
2021). A multilevel monitoring system including spaceborne 
(Landsat), aerial remote sensing, and field measurement 
was conducted to monitor the medicinal plant (Rheum 
tanguticum) resource in Sichuan Province, China (Xie et al., 
2014). They found that only the R. tanguticum with canopy 
coverages of more than 1 m2 could be detected from the aerial 
of 10 cm resolution. Landsat alone has limited capability of 
detecting the scattered R. tanguticum plants.
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The water content of plants is an essential variable for 
the growth and productivity of medicinal plants. The water 
status of plants can be monitored with surface reflectance 
data. Generally, canopy reflectance at near infrared (NIR, 
700 – 1200 nm) is higher than at shortwave infrared (SWIR; 
1300 – 2500 nm) (Figure 1). This is because leaf water status 
has a dominant influence in the SWIR wavelengths by 
strongly absorbing spectral reflectance in this spectra region 
(Pu et al., 2003; Eitel et al., 2006). Water status (drought) 
indices are commonly used to detect the potential risk of 
occurrence and severity of drought, and to study spatial–
temporal reasoning. Remotely-sensing indices such as water 
band index (WBI) and band ratio (NIR/SWIR) response to 
water status in the plant by detecting the canopy surface 
reflectance in the “water bands” spectrum (1200 to 2500 nm 
spectral range) during drought and recovery cycles (Claudio 
et al., 2006; Othman et al., 2014b). Under drought conditions, 
the spectral reflectance in the SWIR region (water absorption 
region) increased and change the vegetation values of indices 
that rely on these bands (Eitel et al., 2006). Up to now, several 
remote sensing methods have been established and used for 
agricultural drought monitoring such as vegetation indices, 
band ratio and empirical remote sensing algorithms (Ligi 
et al., 2017; Zargar et al., 2011). These methods showed the 
potential results in terms of detecting drought conditions in 
plants (Faragó et al., 1993; Zargar et al., 2011).

The use of remote sensing techniques to monitor drought 
and assess its influence has been widely adopted recently 
(Manesh et al., 2019). It is possible to observe the intensity 
of plant water stress and to detect the damage in crop areas 
using various agricultural drought indices (Ryu et al., 2019). 

This directly affects agricultural production (agricultural 
drought), which is most often visible in the physiological 
condition of plants and can be assessed from ground or 
satellite sensors (Wu et al., 2015; Othman et al., 2015, 2021). 
Using these land-surface properties, numerous satellite-
based water stress indices (drought) have been developed for 
effective monitoring (AghaKouchak et al., 2015). However, 
the correlations among this vegetation are not always 
accurate because the definitions of indices are conceptually 
different based on the indicated drought phenomenon and 
the time scale for observing the progress (Zhang et al., 2017). 
In addition, the parameters used in the calculation of each 
index differ according to the meteorological, agricultural, 
and hydrological drought concepts (Anggraini et al., 2016). 
For example, while meteorological drought considers only 
atmospheric dry conditions, agricultural, and hydrological 
droughts are highly related to land conditions. In Iaşi 
region/Romania, the land of several aromatic and medicinal 
plants including Verbena Officinalis, Macarof and Stătescu 
(2017) found that Normalized Vegetation Supply Water 
Index (NVSWI) derived from Landsat 8 Operational Land 
Imager (OLI) were able to detect drought stress. Karnaris 
and Asimopoulos (2020) reviewed the use of the unmanned 
aerial vehicle for detecting aromatic plant growth change and 
response to harsh micro-climate in Greece. They find that 
UAV were able to detect vegetation cover changes (NDVI). 
However, more studies and vegetation indices should be 
developed for the Western Macedonia region to successfully 
detect the response of the aromatic-medicinal plants to harsh 
conditions (cold-dry).

Table 1. Satellite and field sensor spectral, spatial, and radiometric data and their application in vegetation studies.

Platform Sensor Revisit time 
(day)

Spatial Resolution 
(m) Variable Example 

Sentinel-2A MSI 5 10 -20 Leaf area, productivity Cerasoli et al., (2018).

Landsat 8 OLI 16 30
Leaf area, chlorophyll, 
photosynthesis, water 
stress.

Othman et al., (2014b, 2018, 
2020, 2021); Tadros et al., 
(2020), Sawalhah et al., 
(2018; 2021). 

NOAA-15 AVHRR/3 1 1090 Leaf area index Liu et al., (2012)

TERRA / AQUA MODIS 1 – 2 250-1000

Equivalent water 
thickness, leaf area index, 
chlorophyll-a, fraction of 
photosynthetically active 
radiation

Cheng et al., (2013), Liu 
et al., (2012), Moses et al., 
(2009),Qu et al., (2014), 
Yang et al., (2006).

SPOT-5 HRS 27 5 Leaf area index and soil 
moisture.

Soudani et al., (2006), 
Gouveia et al., (2009).

HRG 27 10

VEGETATION 1 165

IKONOS-2 OSA 11- 14 4 Leaf area index, and 
chlorophyll-a.

Soudani et al., (2006), 
Ormeci et al., (2009).

ASD Fieldspec 
Pro Full Range 
Spectroradiometer

-
≈ 1.0 m2 at 1m nadir 
view (25° field-of-
view)

Relative water content, 
chlorophyll florescent, 
photosynthesis, and leaf 
water content.

Matsushita et al., (2010), 
Othman et al., (2015, 2020).
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Figure 1. Canopy and soil surface reflectance under well-water 
and drought stress conditions for woody plants. Source: Canopy 
reflectance data were from Bayat et al. (2016) and soil data were 

from Othman (2014). 

Leaf pigments including chlorophyll and carotenoids 
are essential for several plant processes such as carbon 
assimilation. Chlorophyll is a green pigment found in 
chloroplast and present in green algae and terrestrial plants 
in two forms, chlorophyll, a and b. This pigment absorbs 
light mainly in the red (650 – 700 nm) and the blue (400 – 
500 nm) and reflects the green light (~550 nm) (Jones and 
Vaughan, 2010). Remotely sensed data of leaf pigments 
especially chlorophyll can predict the leaf’s physiological 
status and consequently the plants’ health (Gamon and 
Surfus, 1999).Surface reflectance at 510, 550, 700 and 
750 nm significantly correlated (R2 > 0.75) with the total 
carotenoids in the leaves (Gitelson et al., 2002). Othman et al. 
(2018) found that multispectral data from Landsat ETM+ are 
a reliable source to detect chlorophyll content in the plant. In 
addition, Ormeci et al. (2009) concluded that IKONOS data 
are a reliable source for detecting chlorophyll-a in large areas 
even if the in-situ measurements are limited. At drought 
stress, excess light energy migrates from the chlorophyll 
molecules to the xanthophyll cycle to protect the system 
from damage (Grace et al., 2007). This energy causes a 
shift in the xanthophyll cycle, at which point violaxanthin is 
converted into zeaxanthin causing excess energy dissipation 
(Naumann et al., 2009). The hyperspectral vegetation index, 
and photochemical reflectance index (PRI) successfully 
measured the efficiency of the xanthophyll (Naumann et al., 
2009).Suàrez et al. (2008) found that canopy-PRI derived 
from Airborne Hyperspectral Scanner (AHS) sensor was able 
to detect the physiological responses (xanthophyll pigment 
cycle, stomatal conductance, and stem water potential) of 
plants (Suàrez et al., 2008). In addition, Thenot et al. (2002) 
revealed that PRI could be a non-destructive, cost-effective 
method for detecting water stress in Chenopodium quinoa. 
Considering the previous studies that showed a significant 
relationship between remotely sensed data and leaf pigments, 
especially chlorophyll (content and fluorescence), we believe 
that remote sensing data are a reliable source to assess plant 
chlorophyll and hence plant health. 

Precision agriculture of woody and herbaceous crops 
including medicinal plants requires a piece of accurate 
information about the canopy, specifically coverage 
percentage. Leaf area index (LAI) is an essential variable 
that is used to estimate vegetation cover and productivity 

and as an input to water and energy budgets and ecosystem 
process models (Butson et al., 2002; Fernandes et al., 
2004). When LAI strongly correlates with remotely sensed 
vegetation indices, these indices can be used to scale up those 
variables over large regions (Treitz et al., 2010).Othman and 
St. Hilaire (2021) found that three vegetation indices derived 
from Landsat ETM+ were able to estimate LAI correctly. 
The vegetation indices were normalized difference infrared 
Index-band 5 (NDII5), enhanced vegetation index (EVI), 
and green normalized difference vegetation index (GNDVI). 
In addition, Liu et al. (2012) concluded that vegetation 
indices from Landsat TM/ETM+ including normalized 
difference vegetation index (NDVI), the optimized soil 
adjusted vegetation index (OSAVI), the two bands enhanced 
vegetation index (EVI2) and the modified triangular 
vegetation index (MTVI2) can be used to derive LAI map for 
seasonal crop growth monitoring. Considering the finding 
of previous studies, the use of datasets from high-resolution 
aerial sensors and moderate satellites images are holding 
promises for detecting medicinal plants’ health status by 
estimating canopy cover and chlorophyll content (red, 600-
700 nm; near-infrared spectrum, 700-1100 nm) as well as 
water status (shortwave infrared, 1300-2500 nm).

4. Remote sensing limitations

The current limitations for using remotely sensed data 
are mainly due to restricted spectral range, coarse spatial 
resolution (more than 30 m), low temporal resolution (revisit 
time) as well as inadequate repeat coverage during the 
growing season (Moran et al., 1997). In addition, image 
pre-processing of aircraft- and satellite-based images 
required specialized software and workers. For example, 
satellite sensor data requires atmospheric and geometric 
correction before utilization using special software such 
as ENVI and ERDAS IMAGINE (Othman et al., 2018; 
Sawalhah et al., 2018, 2021). In addition, the acquisition 
of cloud-free space-born images (e.g., MODIS, Landsat) 
is one of the biggest challenges (Whitcraft et al., 2015). 
During the satellite overpass, the area should be cloud-
free to guarantee meaningful images. Therefore, this tool 
could be inefficient during winter and early spring; the time 
when clouds cover percentage is extremely high. Although 
multispectral remotely sensed data such as Landsat series 
and Sentinel-2, hyperspectral remote sensing equipment is 
extremely expensive. In terms of physiological assessment, 
data from several remote sensing studies could show a 
pattern of difficulties in predicting or detecting the plant 
response. For example, when plants are under moderate 
water stress the difference in reflectance is quite narrow. As 
a result, the plant could be exposed to water stress through 
the surface reflectance is almost similar. At the field scale, 
both high spatial and high temporal data are required due to 
the small size of agricultural fields and the quick changes 
in plants through the growing season (Becker-Reshef et al., 
2010; Rocha et al., 2012; Atzberger, 2013). For example, 
moderate spatial resolution data (i.e., 30 m) is essential for 
studying plant responses at a field scale (Roy et al., 2014), 
and high temporal resolution data (i.e., weekly) is obligatory 
for monitoring quick changes during the growing season 
(Zhang et al., 2003; Kovalskyy et al., 2012). These variations, 
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in some cases, may reflect specific agricultural difficulties 
such as drought (McVicar and Jupp, 1998). Generally, if 
the spatial resolution is high enough (e.g., less, or equal to 
30 m), then it is reasonably easy to compare with ground-
based measurements. When the coarse spatial resolution is 
used, a combined airborne and space-borne remote sensing 
datasets might be used for favorable accuracy (Hazaymeh 
and Hassan, 2016).

5. Conclusions 

Plant-based measurements including midday stem water 
potential, relative water content, gas exchange (Pn, gs, E and 
VPD), and leaf pigments (chlorophyll and carotenoids) are 
the best physiological measurements to assess the response 
of plants to environmental stresses including those planted 
for medicinal usage. However, those measurements are 
time consuming and expensive. Remotely sensed data from 
hyperspectral and multispectral sensors make it possible 
to assess medicinal plant physiology through successful 
detection of the ground leaf and canopy physiological 
variables including water status, chlorophyll, and LAI. 
Shortwave infrared indices such as vegetation water stress 
index are useful for estimating medicinal plant water status 
especially when ground physiological measurements (e.g., 
midday stem water potential) are limited. However, those 
remotely sensed indices can markedly predict water levels 
in medicinal plants under severe water stress conditions. 
Surface reflectance vegetation indices can be used in 
estimating water status in vegetation including medicinal 
plants when rainfall is the only source of water and when 
plants are exposed to severe water stress. Under commercial 
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