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Abstract

1. Introduction

One of the key components for understanding soil 
moisture variability in spatial and temporal scales involves 
analyzing the inter-relationship between vegetation and 
temperature indices. The variation of soil properties, such 
as texture, porosity, permeability, and organic matter, could 
affect the distribution of soil moisture at local scales (Mohanty 
and Skaggs 2001). Topography in terms of slope, aspects, 
and curvature could also have a significant contribution 
to soil moisture variations even over a small area as they 
could determine the runoff and evapotranspiration rates. 
The Topographic Wetness Index (TWI) (Beven and Kirkby 
1979) is common and widely used in determining the spatial 
variation of soil moisture and runoff generation (Grabs et 
al. 2009). Vegetation type and density might influence the 
spatiotemporal distribution of soil moisture as they control 
the infiltration, runoff generation, evapotranspiration rates, 
and the dynamic of soil water-retention capacity (Mohanty 
and Skaggs 2001, Jin et al. 2011). Since vegetation responds 
to precipitation, its influence on soil moisture variation is 
more dynamic in comparison with the topography factor. 

Generally, soil moisture estimates can be extracted 
by either direct or indirect techniques (Dorigo et al. 2011, 
Almagbile et al. 2019).  The direct technique involves 

a gravimetric method that calculates soil moisture as a 
percentage by weighting the moist soil, then oven drying it at 
105 Celsius, and reweighting the dried soil. Whereas indirect 
methods measure soil moisture through electromagnetic 
instruments such as neutron probes, capacitance sensors, 
time-domain reflectometry (TDR), Tensiometers, electrical 
resistance blocks, and Psychrometers. The trade-off between 
these sensors varies in terms of sensor costs, the size of soil 
moisture data, and the wetness status of the soil (Bogena 
et al. 2007, Robinson et al. 2008, Seneviratne et al. 2010, 
Dorigo et al. 2011).  

Although in-situ-based measuring of soil moisture could 
provide more reliable and accurate measurements of the 
actual amount of water in the soil at various depths, these 
measurements are limited in their spatial and temporal 
scales. To overcome this, remote sensing methods have 
been extensively used in mapping soil moisture variability 
at larger spatial extents (Xu et al. 2018). In this context, Soil 
Moisture Index (SMI) is widely applied. SMI is normally 
calculated by employing the universal triangular/trapezoidal 
eigenspace theories of the relationship between land surface 
temperature (LST) and normalized vegetation index (NDVI) 
(Carlson 2007, Choi and Hur 2012) using the optical and 
thermal spectral bands of different satellite systems such as 
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Fusion models have been developed to improve the spatial and temporal resolution simultaneously because remote sensing 
data cannot guarantee the high resolution of vegetation and temperature products. In this study, Moderate Resolution Imaging 
Spectroradiometer (MODIS) and Land Remote Sensing Satellite (Landsat) data were fused using the STI-FM fusion model 
for retrieving soil moisture index (SMI) based on the NDVI-LST triangulation/trapezoidal shape. The study was conducted 
from November 2019 to May 2020 and covered a heterogeneous area in Northern Jordan. For validation, the soil moisture 
index results were then compared with the observed in-situ soil moisture measurements at 16 sites distributed throughout 
the study area. To determine the spatial and temporal variability/stability of SMI and observed soil moisture, statistical and 
geostatistical approaches were employed. The results revealed that the relationship between SMI and in-situ measurements 
was high in the wet winter months and low during the warm summer months. The determination coefficient r2 of 0.66 and 
RMSE of 0.10 were found in January while in May, the r2 and RMSE were 0.35 and 0.32, respectively. The results of the semi-
variogram analysis showed that the observed soil moisture was more varied during the wet periods when compared with the 
drier period, whereas the SMI was not influenced by seasonal variations. The results indicated that high values of SMI can 
be obtained with low temperature and rich vegetation, while the higher temperature and water-stressed vegetation revealed 
low SMI values. 
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Moderate Resolution Imaging Spectroradiometer (MODIS) 
and Landsat (Sandholt et al. 2002, Sun et al. 2012, Xu et al. 
2018, Fan et al. 2019). 

Since remote sensing observations have either a high 
spatial resolution or high temporal resolution, MODIS/
Landsat fusion models have been developed to produce 
high-resolution data in both temporal and spatial scales. 
Such models include the Spatial and Temporal Adaptive 
Reflectance Fusion Model (STARFM) (Gao 2006), the 
Spatial-temporal Adaptive Data Fusion Algorithm for 
Temperature mapping (SADFAT) (Weng et al., 2014), and the 
Spatial-temporal Image Fusion Model (STI-FM) (Hazaymeh 
and Hassan 2015a). 

The relationship between soil moisture and Normalized 
Difference Vegetation Index (NDVI) has been investigated 
intensively (e.g., Farrar et al. 1994, Liu and Kogan 1996, 
Adegoke and Carleton 2002, Wang et al. 2007, Schnur et al. 
2010). These studies found that NDVI and soil moisture are 
significantly correlated. In recent years, fusion models have 
emerged for computing soil moisture index by analyzing the 
NDVI-LST relationship. The scope of these investigations 
was to emphasize the importance of improving the spatial 
and temporal resolution of soil moisture products for 
accurately enhancing many agricultural and agroclimatic 
applications such as agriculture monitoring, drought and 
flood analysis, and natural resource reservations. Zhong et 
al. (2018) adopted downscaling technique for soil moisture 
retrieving using microwave soil moisture products whereas 
Xu et al. (2018) employed a downscaling method based on 
MODIS/Landsat fusion algorithm for retrieving surface 
soil moisture. These studies used in-situ soil moisture 
measurements for validating remote sensing data. 

Apart from estimating soil moisture from NDVI-LST 
relationship space, several previous studies (e.g., Hills and 
Reynolds 1969, Hawely et al. 1983, Westren et al. 1999, 
Mohanty et al. 2000, Mohanty and Skaggs 2001) have been 
conducted for analyzing soil moisture in heterogeneous 
environments. The relationship between soil moisture 
patterns and other environmental factors such as topography 
and vegetation has been intensively studied on different 
spatial and temporal scales. Early attempts were conducted by 
Hills and Reynolds (1969) to find a relationship between soil 
moisture and slope and found that no significant relationship 
existed. In a small agricultural watershed, however, Hawely 
et al. (1983) found that the variation of soil moisture was 
greatly affected by the topography factor. This result was 
also found by Mohanty et al (2000). Grabs et al. (2009) 
developed a new wetness index to show its capacity to truly 
predict the spatial distribution of soil moisture. Soil moisture 
dynamic concerning the land cover was also investigated. In 
complex terrain with mixed vegetation, Hawely et al. (1983) 
found that temporal soil moisture tends to be more stable in 
comparison with sparse vegetation. 

To determine the relationship between moisture and 
environmental factors (temperature, topography, and 
vegetation), various statistical approaches were used. 
These approaches can be categorized into descriptive and 

analytical statistics such as mean, variation coefficient, 
standard deviation, correlation and regression, and 
geostatistical analysis (e.g., Qiu et al. 2001, Brocca et al. 
2010). The influence of the environmental variables on soil 
moisture can be determined using intrinsic methods such 
as principal component analysis (Zhang and Oxley 1994). 
The extrinsic methods, on the other hand, are divided into 
linear (e.g., canonical correlation analysis) and nonlinear 
such as canonical correspondence analysis (Qiu et al. 2001). 
Although both linear and nonlinear methods are powerful in 
relating the soil moisture pattern to environmental factors, 
the nonlinear methods have been proven to be more robust 
than the linear methods (Zhang and Oxley 1994, Qiu et 
al. 2001). In a similar environment, Ibrahim et al (2021) 
evaluated the influences of LST on NDVI, SMI, normalized 
difference water index (NDWI), and dry bare soil index 
(DBSI) using a series of Landsat and MODIS images. The 
results showed that the SMI decreased by around 44 % in 
2019 compared with those 1990. Using correlation analysis 
techniques, Jaber (2018) investigated the relationships 
between vegetation abundance and LST in different seasons 
in the years 1987 and 2016 in urban areas in Greater Amman 
Municipality. The results showed a negative relationship 
between vegetation abundance and LST in summer, while 
a positive relationship was found in winter. Jaber (2021) 
also demonstrated the relationship between NDVI and 
daytime and nighttime LST in Jordan based on MODIS 
data in different seasons in 2017. The results showed that 
the variability in NDVI can be explained by land cover. 
However, the variation in the daytime and nighttime LST can 
slightly be correlated to the variation in land cover. 

The main objective of this study is to infer the spatial 
variation of soil moisture over a heterogeneous environment 
in northern Jordan based on integrated ground soil data and 
remote sensing data. To improve the spatial and temporal 
resolution of soil moisture products, remote sensing data 
including MODIS and Landsat-8 data are fused using 
the STI-FM technique (Hazaymeh and Hassan, 2015a, 
b). More specifically, this study aims to (i) investigate the 
relationship between the normalized difference vegetation 
index (NDVI) and land surface temperature (LST) using 
high spatiotemporal fused data (ii) estimate soil moisture at 
high spatial and temporal scales, (iii) validate the estimated 
remote sensed-based soil moisture with ground-based soil 
moisture, and (iii) demonstrate the variation of the observed 
and estimated soil moisture in both spatial and temporal 
dimensions.

2. Material and methods
2.1 Study area

The study area is in the northern part of Jordan (32° 23ʹ to 
32° 28ʹ N and 35° 49ʹ and 36° 2ʹ E) with an approximate area 
of 50 km2 (Figure 1). This study area was chosen because 
it has heterogeneous characteristics in terms of topography, 
climate, vegetation, and soil. Thus, soil moisture is subject 
to wide variations within a short distance and time. The 
characteristics of vegetation and soil type provided below 
were observed during our soil sampling campaigns which 
were conducted between November 2019 and May 2020.  



Geographically, the study can be divided into three parts:

Figure 1. The geographic extent of Jordan (up) and the geographic 
extent of the study area with soil sample locations (bottom).

Figure 2. SRTM-30m digital elevation model (A), and the generated 
slope (B) of the study area

Figure 2 which shows the elevation and slope (degrees) 
in the study area, was derived from Aster Global Digital 
Elevation Model (DEM) with a 30-meter resolution 
(https://search.earthdata.nasa.gov/search). The percentage 

of variations of sand, clay, and silt was interpolated using 
ordinary kriging based on the observed soil data during 
our sampling campaign (Figure 3). As can be seen, the 
heterogeneity of the landscape features in the study area 
would in turn have a significant effect on the spatiotemporal 
variation of soil moisture.

(1) The hillslope area is in the western part of the study 
area and has a topography that varies from complex to 
moderate relief with elevation ranges between 600m 
and 1150 m above mean sea level. The climate is 
characterized by hot-dry summer and modest wet winter. 
The annual averages of rainfall and temperature are 580 
mm and 14.4 ᵒC, respectively. These vegetation types 
are natural vegetation such as wild pistachios (Pistacia 
Atlantica), evergreen oak (Quercus ilex), pine (Pinus), 
Carbo tree (Ceratonia siliqua), and wild strawberry 
(Fragaria vesca) common, as well as cereal crops (e.g., 
Wheat (Triticum), barley (Hordeum vulgare), and lentil 
(Lens culinaris)) and orchards (Olives (Olea europaea), 
apple (Malus Domestica), nectarine (Prunus persica var. 
nucipersica), peach (Prunus persica), and vine (Vitis)), 
particularly in the moderately sloped areas. Soil types 
consist of fine and coarse textures with predominantly 
clay, silt, and loam.  

(2) The gentle-sloped area is in the eastern part of the study 
area and has moderate relief with elevation ranges 
between 500 to 800 meters above mean sea level. The 
climate is a transition from sub-humid to semi-arid 
with annual averages of rainfall and temperature of 140 
mm and 16.9 ᵒC, respectively. In almost all months, the 
precipitation in this area is less than the evaporation. 
The vegetation and land cover include grass and pasture; 
thus, a huge part of this area is allocated for grazing. In 
the areas located close to the sub-humid climate, Wheat 
(Triticum), barley (Hordeum vulgare), and lentil (Lens 
culinaris) crops are cultivated. The soil type is a coarse 
and fine texture with sand and loam.   

(3) The plain area is located between the abovementioned 
areas. It has moderate climate conditions with annual 
average precipitation and temperature of 460mm and 
17.8 ᵒC, respectively. It is characterized by simple 
topography with elevation ranges between 450 to 650 
meters above sea mean level. Clay soil is predominant 
with small patches of silt and loam. Agricultural lands 
include orchards which consist mainly of Olives (Olea 
europaea), apples (Malus Domestica), nectarine (Prunus 
persica var. nucipersica), peach (Prunus persica), and 
vine (Vitis)), and the dominant crops including Wheat 
(Triticum), barley (Hordeum vulgare), and lentil (Lens 
culinaris) which occur in most parts of this part of the 
study area.
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Figure 3. Soil texture characteristics based on soil textural triangle, 
percentage of clay (A), silt (B), and sand (C) in the study area 

•	 In the case of the hilly area, the samples were taken on 
a gentle slope and the steep slope was avoided because 
the soil depth is very shallow.

•	 during rainfall events, sampling was suspended. 

•	 All soil samples were taken in rainfed areas, thus 
irrigated areas were avoided. 

•	 The minimum distance between sample locations was 
at least 2 km to avoid homogeneity of topography, 
vegetation, and soil. 

•	 To avoid human activities such as industrial, trading, 
and irrigated agriculture which may influence the soil, 
built-up areas (urban areas), road networks, and dense 
tree canopy were avoided.

After soil samples were collected, soil moisture was 
computed in the laboratory using the volumetric soil moisture 
method. In this method, each soil sample was weighed 
before and after oven drying. Then the water content in each 
sample was converted to a percentage value. The volumetric 
method was selected due to its simplicity, robustness, and 
low technical work required to derive the soil water content 
(Robock et al. 2000, Seneviratne et al. 2010). Therefore, it is 
widely used for calibrating indirect methods such as neutron 
probes (Almagbile et al. 2019).

In Situ measurements
Soil data were collected from 16 sample locations spread 

over the study area (Figure 1) at depth of 10 cm.  Table 1 

shows the description of soil samples, soil moisture %, and 
the soil type for each sample location. Field visits were 
conducted once a month from November 2019 to May 2020. 
The position of each soil sample was determined using a 
real-time kinematic (RTK) receiver with approximately 3cm 
level accuracy. It is worth mentioning that the following 
restrictions have been considered during soil samples 
collection:

Table 1. Description of the sixteen soil samples used to calculate the reference soil moisture measurements in this study

Sample Location ID X Y SM % soil type LULC

1 7 32.40123 35.81503 18.4 clay Grass

2 26 32.42580 35.83848 16.6 clay bare soil

3 16 32.42877 35.86696 19.3 clay bare soil

4 10 32.42002 35.89748 16.5 clay bare soil

5 12 32.43119 35.93785 17.7 clay wheat crop

6 20 32.44408 35.97006 13.5 clay bare soil

7 17 32.44988 36.01881 12.8 sand-loam grass

8 13 32.45095 36.04061 12.2 sand-loam-clay grass

9 15 32.43652 36.04082 13.9 sand-loam grass

10 5 32.43306 36.05966 9.8 sand-loam-clay grass

11 2 32.45389 36.07126 10.9 sand-loam grass

12 3 32.44138 36.08727 9.5 sand-loam grass

13 25 32.44432 36.11991 9.3 sand-loam grass

14 4 32.41133 35.83432 19.1 clay orchard

15 22 32.42196 35.81295 18.0 clay orchard

16 1 32.43943 35.95331 15.2 clay orchard
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Remote Sensing Datasets
NDVI and LST
Table 2 illustrates the characteristics of the remote 

sensing dataset that has been used in this study. Two types 
of datasets were used (i) MODIS collections (i.e., MOD13Q1 
and MOD11A2). The MOD13Q1 collection provides the 
composite NDVI values over 16 days at 250m spatial 
resolution where cloud-free global coverage is achieved 
by replacing clouds with the historical MODIS time series 
climatology record. The MOD11A2 provides composite 

8-day LST data at 1km spatial resolution. The MOD11A2 
collection comprised daytime and night-time LSTs, quality 
assurance assessment, observation times, view angles, bits 
of clear sky days and nights, and emissivity estimated using 
the spectral bands 31 and 32 concerning land cover types. (ii) 
The Landsat 8 Operation Land Imager (OLI) and Thermal 
Infrared Sensor (TIRS) at 30m spatial resolution. Here, the 
red (0.64-0.67 μm), near-infrared (0.85-0.88 μm), and thermal 
(10.6-11.19 μm) spectral bands were used to calculate the 
NDVI and LST maps.

Table 2. Characteristics of remote sensing dataset used in this study

Satellite MODIS 8day composite Landsat-8 (L8)

Product NDVI LST NDVI LST

Collection MOD13Q1 MOD11A2 Level 2 Level 2

Type 16-day composite 8-day composite individual day individual day

Spatial Resolution 250m 1000m 30m 30m

 Spectral bands Red and NIR TIR 
31 and 32 Red and NIR TIR 10

MODIS Day of the Year,
L8 Acquisition date

2019: 329, 337, 345, 353, 361
2020: 001, 009, 025, 033, 041, 0.49, 057, 065, 

072, 081, 089, 097, 105, 129 

2019/11/26, 2020/02/14, 2020/04/02, 
2020/04/18, 2020/05/04, 2020/05/20

Path/Raw v05/h21 174/037

Sources Google Earth Engine

Data processing Soil Moisture Index

Calculating NDVI and LST using a data fusion model

In this study, original NDVI and LST images were used 
to generate synthetic Landsat-like NDVI and LST by fusing 
the original MODIS and Landsat 8 using the STI-FM model. 
The fusion of MODIS and Landsat 8 allows the generation of 
synthetic images at the spatial resolution of Landsat 8 (i.e., 
30m) and the temporal resolution of the MODIS product.  
From the relationship between the LST and NDVI, the soil 
moisture index is retrieved.

Early studies (Carlson 1986, Gillies, and Carlson 1995) 
used the vegetation index/temperature (VIT) trapezoidal 
shape for determining soil moisture index (Figure 4). 

The trapezoidal shape in the Ts-VIs scatters plots emerge 
due to the negative relationship between these two variables. 
For instance, Ts have low sensitivity to the variation of water 
content over vegetated areas, while it has high sensitivity 
over bare soils. For example, a non-water stress condition can 
be identified when the VIs values increase along the x-axis 
while the Ts values decrease along the y-axis. This is due to 
the cooling effects of evapotranspiration, and vice versa. In 
the Ts-VIs scatter plot, the VIs and Ts are represented on the 
x-axis and the y-axis, respectively. Referring to Figure 4, the 
theoretical dry edge that represents the water stress condition 
is defined along the edge that connects the no evaporation and 
the no transpiration points. While the theoretical wet edge, 
which represents the well-watered condition, is defined by the 
horizontal line that connects the maximum evaporation and 
the maximum transpiration points. In Figure 4, values along 
the Ts axis reflect the effects of water content and topography 
over the bare lands, while values along the VIs axis show 
the effects of the water content and vegetation density 
over the vegetative land. The values inside the trapezoidal 
shape represent varying vegetation cover between the bare 
lands and dense vegetation. Note that the trapezoidal shape 
might be affected by many factors including, (i) evaporation 
levels; (ii) vegetation density and moisture status; (iii) local 
climate; (iv) the number of pixels in the scene; and (v) other 
specific study area characteristics such as topography, soil 
type, spatial heterogeneity, and latitude. In Figure 4, the dry 
condition appears in the upper envelope of the trapezoid, 
A–C, a.k.a “warm edge” whereas the “cold edge” occurs in 
the lower limit of the trapezoid, B–D. Soil moisture index 

where a and c are the slope and intercept, respectively. 
Note that STI-FM has been validated in previous work and 
used in developing a remote sensing-based agricultural 
drought indicator and successfully implemented over a semi-
arid region in Jordan.

STI-FM is a recently developed model that used two 
MODIS images taken at time one and time two, and one 
Landsat image taken at the time one [L(t1)] to generate a 
synthetic Landsat surface reflectance and land surface 
temperature image at time two. The STI-FM model begins 
with determining the rate of the temporal change in spectral 
signatures between the two MODIS images at times one 
and two. Based on this relationship, the temporal changes 
might be either positive or negative change. In some cases, 
however, no change could be identified.  In the second step, a 
linear relationship between the MODIS images for each case 
of change is developed (Hazaymeh and Almagbile 2018). 
Finally, a synthetic Landsat surface reflectance or surface 
temperature image at time two synth_L(t2) is generated using 
the regression coefficients computed in the second step as 
follows: 

................................................… (1)
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can be retrieved from the relationship between the LST and 
NDVI based on the location of a pixel in the LST-NDVI 
space defined in a scatter plot. Therefore, the soil moisture 
index ranges between 0 at the “warm edge” and 1 at the “cold 
edge” (Zhan et al. 2004, Parida et al. 2008). The SMI for 
a given pixel (LST, NDVI) in the LST-NDVI space can be 
retrieved as (Sandholt et al. 2002):

Where Tmax and Tmin represents the maximum and 
minimum slopes of the trapezoid and can be respectively 
calculated as:

where a1, a2,  and b1, b2 are the regression coefficients.

Statistical analysis

Data processing

 Geostatistical analysis 

The variation of soil water content in both spatial and 
temporal scales was determined using statistical analysis 
such as the spatial and temporal mean, standard deviation, 
and variation coefficient.  The spatial and temporal mean 
of soil moisture can be respectively calculated as follows 
(Brocca et al. 2010):

Where  is the soil moisture in location (point) i and 
sampling day j, N, and M are the number of measured 
points and sampling days, respectively? The coefficient of 
variation C.V for both spatial (C.Vi) and temporal (C.Vj) can 
be calculated respectively as (Brocca et al. 2010):

Where  and  are the standard deviation of the 
spatial and temporal soil moisture?

 The temporal persistence of soil moisture, relative to 
point i and time j, is given by (Brocca et al. 2010)

The mean relative difference (MRD) and its standard 
deviation (SDRD) over the sampling time can be computed 
as:

 The relationship between the SMI and observed 
soil moisture from in-situ measurements was computed 
using simple regression analysis. Then, the coefficient 
of determination (R2) and the root of mean squared error 
(RMSE) were used as evaluation metrics of the results using 
the following equation: 

Where A(t) and S(t) are the actual and the synthetic 
Landsat-8 surface reflectance images A(t) and S(t)  are the 
mean values of the actual and the synthetic Landsat-8 
images, and N is the number of observations.

In this study, original NDVI and LST images were used 
to generate synthetic Landsat-like NDVI and LST by fusing 
the original MODIS and Landsat 8 using the STI-FM model. 
The fusion of MODIS and Landsat 8 allows the generation of 
synthetic images at the spatial resolution of Landsat 8 (i.e., 
30m) and the temporal resolution of the MODIS product.  
From the relationship between the LST and NDVI, the soil 
moisture index is retrieved.

To demonstrate the Spatiotemporal pattern of the observed 
and estimated soil moisture, a geostatistical interpolation 
technique based on the Ordinary Kriging- semi-variogram 
function is used. The semi-variogram provides a basic tool 
for examining spatial autocorrelation as a function of the 
distance between observations (Romshoo 2004).  Generally, 
the theoretical semi-variogram consists of different models 
namely linear, spherical, circular, exponential, and Gaussian. 
The mathematical expression to estimate the semi-variance 
is defined as (Olea 1999; Webster 2001):

where y(x) is the empirical semi-variogram; z (xi + h), 
z(xi) is the soil moisture values at sample points xi and xi +h, 
spaced apart at distance h; nh is the number of pairs (xi, xi +h) 

...........................................................… (2)

....................................................… (3)

.................................................… (4)

......................................................................… (9)

...................................................................… (10)

.................................................… (13)

.......................… (14)

........................................… (11)

......................… (12)

Figure 4. The trapezoidal shape illustrates the relationship between 
NDVI and LST for estimating soil moisture (after, Zhan et al. 2004)

...................................................................… (5)

..............................… (7)

..............................… (8)

...................................................................… (6)
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of soil moisture values at points spaced at distance, used for 
calculating the semi-variogram function.

Normally, the experimental semi-variogram consists of 
a nugget, sill, and range. The nugget values do not approach 
zero at the origin y-axis due to the spatially uncorrelated 
noise or error in observations, (Kitanidis 1997). The range 
is a distance where the semi-variogram model first flattens 
out whereas the sill is a value that the semi-variogram model 
attains at the range. 

The most suitable semi-variogram model is the one 
that achieves the smallest RMS error between the semi-
variance values obtained from the observed soil data and 
the theoretical model that predicts the semi-variance values. 
Following published research (e.g., Romshoo 2004; Kumar 
et al. 2014), the spherical model has been found the best 
model that achieves the smallest RMSE between the actual 
and theoretical model computed semi-variance values. Thus, 
this study employed the spherical semi-variogram model for 
determining the spatiotemporal pattern of soil moisture. The 
spherical semi-variance models can be given as (Kumar et al. 
2016, Romshoo 2004)

conditions as the eastern part observes higher temperatures 
and lower precipitation values than those for the western 
parts, (ii) soil properties which consisted of a higher 
percentage of sand in the eastern part compared to clay, 
silt, and loam in the central and western parts (see Figure 
3). As a result, the SMI in the eastern part does not exceed 
0.4 while it reaches more than 0.6 in the central and western 
parts in almost all the months of the study period. It can 
also be seen that the topography condition plays another 
crucial role in determining the SMI values in the study area. 
This predominantly occurs when comparing the SMI in the 
central part with those in the western part. Since the central 
part is almost a plain area that includes a clay texture and 
deep soil layer, the SMI was always larger than 0.4. On the 
other hand, the complex relief, mixed soil texture, mixed 
natural vegetation (e.g., evergreen oak and pine), and shallow 
soil layer controlled the SMI values in the western part.

The parameters, C0 and a denote nugget and effective 
range respectively, C0 + C is the sill, and C is the partial sill.

......................… (15)

3. Results and discussion
NDVI-LST space for retrieving SMI

The NDVI-LST space using synthetic images derived 
from the STI-FM data fusion algorithm was used for 
retrieving monthly surface soil moisture for the growing 
season from November 2019 to May 2020 in the study area. 
The computed SMI reflects the vegetation and temperature 
conditions in the study area. From Figure 5, the NDVI-LST 
space showed trapezoidal shapes. As such increase in NDVI 
values reflects a decrease in the LST values and vice versa. 
As shown in Figure 5, the relationship between the NDVI-
LST is clear in wet and cold months (November to March). 
On the contrary, the situation is different in the warm months 
(April and May) as an increase in LST joined with an increase 
in NDVI in the study area. This situation can be seen when 
comparing the trapezoidal shapes in these months. This can 
be related to the increase in LST which in turn causes an 
increase in evapotranspiration and hence a reduction of soil 
water content and vegetation cover. As a result, the retrieved 
SMI based on the relationship between the NDVI and LST 
reflects a realistic soil water content during the wet and cold 
months compared with those of the warm and dry months. 

Figure 6 shows the spatial distribution of SMI in the 
study area during the study period. It showed the regions 
which exhibit a high level of soil moisture in five categories 
with equal interval breaks to emphasize the amount of soil 
moisture values relative to other values. Generally, the 
eastern part of the study area showed the lowest values of 
soil moisture while the central and western areas exhibit 
the highest. This might be due to (i) the variation in climate 
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Figure 5. NDVI-LST space for (a) November, (b) December, 
(c) January, (d) February (e) March (f) April, and (g) May with 

maximum and minimum slope lines and regression coefficients
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Figure 6. The spatial distribution of soil moisture index (SMI) 
during the study period from November 2019 to May 2020 in the 

study area

Soil moisture index and its validation
In this study, 16 in-situ measurements were used to 

validate the estimated SMI from synthetic Landsat 8 images. 
Figure 7 illustrates the relationship between the measured 
and estimated SMI along with the quantitative results of the 
determination coefficient (R2) and root mean square error 
(RMSE). In general, the trend of the distribution of points was 
closely distributed to the regression line, this means that the 
estimated SMI results were close to the soil moisture in-situ 
measurements. Moreover, a moderate correlation between 
the estimated SMI and the in-situ measurements is obvious 
in the study area during the wet months such as 0.66, 0.62, 
and 0.49 in January, February, and April. Whereas weak 
correlation values were observed during November (0.38), 
December (0.38), and May (0.35). These results indicated that 
the value of SMI increases in wetter months (i.e., January 
and February) and decreases in lower precipitation (i.e., 
November and December) and warmer months (i.e., May). 
This means that a high amount of rainfall leads to an increase 
in the soil water content and hence enriches the vegetation 
cover. The RMSE values, on the other hand, ranged between 
0.10 in January to 0.32 in May and thus it behaves oppositely 
with r2 and confirmed its results.
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Figure 7. Relationship between observed soil moisture and estimated soil moisture index (SMI) in (a) November, (b) December, (c) January, 
(d) February, (e) April, and (f) May. Note that the in-situ measurements of soil moisture for March were not performed due to the Covid-19 

lockdown restrictions in the study area.
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Figure 8. Temporal average, standard deviation, and variation 
coefficient for the observed soil moisture (up) and SMI (bottom)

Statistical analysis of the observed soil moisture and SMI
The variation of the soil moisture index, as well 

as observed soil moisture in both spatial and temporal 
dimensions, is statistically presented to illustrate whether 
both the SMI and observed soil moisture vary in a similar 
pattern. This includes spatial and temporal averages, 
standard deviation, variation coefficient, mean relative 
difference and root mean square error (RMSE). Figure 8 
shows the temporal averages, the standard deviation, and the 
variation coefficient of the observed soil moisture and SMI 
of the 16 in-situ measurements. The temporal average in both 
the observed soil moisture and SMI was similar. This means 
that when the temporal average of observed soil moisture for 
a measurement point is high, it is also high for that point in 
the case of SMI and vice versa.  For instance, the average 
in sample points 3-9 fluctuates between 9– 12% and 0.2-0.3 
in the observed soil moisture and SMI, respectively. In both 
observed soil moisture and SMI, the average in these points 
was relatively less than the other data sample points. For 
the other sample points (10-16) the average ranges between 
15 -20% in the case of the observed soil moisture, and thus 
it coincides with those in the SMI. The fluctuations of the 
temporal averages are attributed to the different climate 
conditions, topography, soil texture, and vegetation cover in 
the study area. The standard deviation reflects the temporal 
variations of soil moisture in the study area as such a huge 
change in soil water content of a point reflects a large standard 
deviation and vice versa. Overall, the standard deviation was 
relatively low in both observed soil moisture and SMI. In the 
case of the observed soil moisture, the variation coefficient 
showed that sample points 1-9 have high variations because 
their values range between 75-38% whereas the rest sample 
points have a steady stable variation with values ranging 
between 40-45%. For the SMI variation coefficient, the 
values were relatively high (around 100%) for sample points 
3-9 while it was between 40-60% for the other sample points.

For the spatial analysis, the average, standard deviation, 
and variation coefficient for the observed soil moisture 
and the SMI are presented in Figure 9. The spatial average 
increases with the increase in rainfall and vice versa. Thus, 
for the observed soil moisture case, the highest spatial 
averages occurred in January and February during the study 
period. In these months, the spatial averages were 20% 
whereas the averages in November, December, April, and 
May were approximately 9, 17, 11, and 5%, respectively. 
For the SMI case, the averages ranged between 0.4 and 0.5 
from November to the end of February, then it rapidly fell 
to approximately 0.1 in April and ended up at 0.7 in May. 
Since the relationship between the NDVI and LST controls 
the SMI, the growing season, which starts in November 
and extends until May, reflects an increase in SMI.  In 
April, the evapotranspiration exceeds the precipitation, 
and therefore, the decay of vegetation causes a reduction of 

SMI. Notably, the high values of SMI in May are attributed 
to the vegetative propagation of the natural vegetation (e.g., 
pine, oak, and wild pistachios) and orchards (e.g., apricot, 
nectarine, and nuts). Since the variation of the spatial average 
in the observed soil moisture and SMI is relatively small, 
the standard deviation and variation coefficient values were 
steadily stable throughout the whole study period. 

The results of temporal stability analysis including the 
mean relative difference (MRD), the RMSE, and standard 
deviation for the observed soil moisture and the SMI are 
depicted in Figure 10. The purpose of MRD is to compare the 
soil moisture value at a particular data point to the average 
over the study area. Thus, a point is deemed to be dry or moist 
if it is less or greater than zero, respectively. To determine 
whether the soil moisture in a point is in stable status or not, 
the standard deviation of mean relative difference (SDRD) 
is normally used. As such low SDRD represents temporal 
stability whereas a large SDRD indicates that the soil 
moisture in a point is not linearly related to the study area.
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Figure 9. Spatial average, standard deviation, and variation 
coefficient for the observed soil moisture (up) and SMI (bottom)

In the case of the observed soil moisture, two groups 
can be found in terms of dry and moist status. The first 
group is dry and includes sample points 1-9 as their MRD 
values were below the mean (zero). The second group, on 
the other hand, consisted of sample points 10-16 which were 
found as moist samples as their MRD values were above the 
mean. This might be related to the location of the first group 
which represents a semi-arid area whereas the second group 
belongs to a sub-humid area. For the SMI, the situation was 
slightly different because sample points 3-9 and sample point 
number 14 had MRD values below the mean, while the rest 
of the data points had MRD values greater than the mean. 

A clear image can be observed when comparing the values 
of SDRD and RMSE for each data point for both observed 
and SMI. For the observed soil moisture, the highest SDRD 
values (above 0.3%) were found for sample points 3, 7, 8, 12, 
14, and 15, whereas the lowest SDRD values (0.15%) were 
noticed in points 10, 11, and 13. This means that the points 
which have low SDRD values were temporarily stable while 
the other data points exhibited large variations within a short 
time. In the case of the SMI, the opposite situation can be 
noticed for points 14 and 15 because their SDRD and RMSE 
values were different from those obtained by the observed 
soil moisture. Therefore, these data points were not linearly 
linked to the observed soil moisture.
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Spatiotemporal variability of soil moisture
Figure 11 shows the semi-variogram analysis of the 16 

soil moisture locations over the whole study period. This is 
to clarify the spatial autocorrelation among soil moisture 
observations as a function of distance. As can be seen in 
Table 3, the minimum and maximum nugget values of 1.11 
and 6.42 occur in November and April respectively. Since 
the nugget values were relatively high in some months, 

some factors other than the distance between observations 
influence soil moisture variability. The lowest sill values 
occur in the driest periods (November, April, and May) with 
values varying from 0.61 to 7.59. On the other hand, the sill 
values in December, January, and February (wet periods) are 
18.30, 28.54, and 32.7 respectively. The range of correlation 
length varies from 10545 m in April to approximately 29428 
m from November to February.

Figure 11. Semi-variogram analysis of the observed soil moisture in (A) November, (B) December, (C) January, (D) February, (E) April, and 
(F) May. The black dots represent the soil observations.
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Figure 12. Semi-variogram analysis of SMI in (A) November, (B) December, (C) January, (D) February, (E) April, and (F) May. The black 
dots represent the soil observations.

date of sample observation Nugget Sill Range (m)

24-Nov 2020 1.11 0.610 29428

17-Dec 2020 6.26 18.30 29428

29-Jan 2021 3.74 28.54 28718

18-Feb 2021 2.47 32.70 29428

24-Apr 2021 6.42 7.59 10545

15-May 2021 5.02 5.96 13630

Table 3. Semi-variogram model elements (range, sill, and nugget) of the 
observed soil moisture samples over the study period

(24th November 2020 to 15th May 2021)

For the case of SMI, the Analysis of the Spherical semi-
variogram model is depicted in Figure 12 and Table 4. 
Throughout the study period, the nugget values varied from 
0.001 to 0.009 and this reflects a tiny error in soil moisture 
observations. The sill values are opposite to those found in 
the case of observed soil moisture because the lowest values 
were observed during the wet period (December, January, 
and February) whereas the drier period, such as April and 
May, in particular, exhibit higher values. This reflects a 
larger correlation length (range) in the drier period and a 
shorter range during the wet period.
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Table 4. Semi-variogram model elements (range, sill, and nugget) of SMI 
over the study period

(24th November 2020 to 15th May 2021)

date of images nugget sill range

24-Nov 0.004 0.036268 20125

17-Dec 0.009 0.031228 13544

29-Jan 0.001 0.046645 14149

18-Feb 0.001 0.052551 14139

24-Apr 0.001 0.19372 29428

15-May 0.001 0.25382 29428

4. Conclusions 

High spatial and temporal resolutions make satellite 
images valuable resources for soil moisture monitoring when 
the ground-based measurements are absent or not evenly 
distributed. However, due to the trade-off between spatial 
and temporal resolution of satellite data and the possibility 
of cloud contamination, new spatiotemporal data fusion 
techniques were developed and used to generate synthetic 
satellite-like images. In this context, STI-FM was used to 
generate synthetic NDVI and LST by fusing MODIS and 
Landsat 8 products. The correlation between the NDVI and 
LST images was tested and used to calculate the SMI over 
a heterogenous study area in northern Jordan during the 
growing season from November 2019 to May 2020. Results 
showed that the NDVI-LST relationship is an objective and 
robust metric for estimating and identifying the spatial 
distribution of soil moisture in the study area. The results 
also show a moderate correlation between the measured and 
SMI for the wetter months and a low correlation in the drier 
months. The high correspondence between SMI calculated 
based on the NDVI-LST relationship and independent in-situ 
metrics demonstrates the high potential of satellite images 
in monitoring and identifying the spatial distribution of 
soil moisture in the study area. Furthermore, the results of 
the semi-variogram analysis for the observed soil moisture 
show that the drier months have higher soil moisture 
variability than the wet months. For the case of SMI, the 
semi-variogram analysis showed no seasonal pattern of soil 
moisture variability. It was demonstrated that the NDVI-LST 
relationship and SMI are likely linked to a different climate, 
soil, and terrain properties in the study area which has a 
strong impact on spatiotemporal variability/stability of soil 
moisture.
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