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Abstract

1. Introduction

The interpretation and processing of satellite images 
to extract information and parameters, either qualitatively 
or statistically, is a cornerstone of remote sensing (Royal 
Cultural Center, 1995). Multispectral and hyperspectral 
spectral imaging are two different types of spectral imaging 
that use comparable technologies. They're different imaging 
methods in that they each have their own set of applications. 
Remote sensing for species mapping, mineral exploration, 
food engineering, agriculture, atmospheric studies, ecology, 
health care, and agriculture are examples of such application 
spaces. The acquisition of visible, near-infrared, and short-
wave infrared images is part of multispectral remote sensing 
(USGS, 2021).

A multispectral image gathers image data across the 
electromagnetic spectrum within a specified wavelength 
range. At these distinct wavelengths, the various materials 
collected reflect and absorb differently. It is feasible to 
distinguish between materials using this imaging technology 
based on their spectrum reflection fingerprints as seen 
in these remotely sensed images. Direct identification is 
impossible as a result. For example, Shamsham and Idries 
(2022) estimated surface soil particles using remote sensing-
based data in Al-Ghab Plain, Syria. Hyperspectral remote 
sensing, on the other hand, analyzes a broad spectrum of 
light rather than assigning primary colors to each pixel. Its 
main purpose is to extract a spectrum from each pixel in a 

scene image to locate objects, detect processes, and identify 
materials. 

There are numerous benefits to using remote sensing 
with their various types, including (1) large existing 
databases such as Landsat, Sentinel-2, and Hyperion, (2) 
the ability to obtain regional perspectives of large areas, (3) 
ease of integrating information from multiple sensors, (4) no 
difficulty or danger in covering remote areas, (5) availability 
of sophisticated computer analysis software, (6) a wide range 
of energy ranges (such as infrared, UV, and so on), and (7) It 
is low-cost and fast. Land use mapping, weather forecasting, 
environmental and natural hazards investigations, and 
geological mapping are just a few of the applications that 
have benefited from remote sensing (Chasmer et al., 2020).

In numerous geological research, such as assessing 
the damage caused by earthquakes, volcanoes, landslides, 
floods, and melting in polar regions, remote sensing data is 
a significant source of information. In mineral exploration 
research, remote sensing (multispectral and hyperspectral 
data) has become a significant method for finding and 
mapping minerals without having to go to the field (Treitz 
& Rogan, 2004; Ayodele & Ajigo 2020). Jordan is rich in 
minerals that are well-identified by the Natural Resources 
Authority (NRA), of Jordan. However, the exact borders 
of the deposits are not delineated as areas, but as points. 
Therefore, this study came to use advanced technologies 
(remote sensing and GIS) to map the areas covered by silica 
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Mining is critical to human development. Today it necessitates cutting-edge spatial technology due to a variety of 
environmental and social constraints. With free remote sensing data such as Sentinel-2 data from the Copernicus program 
and EO-1 Hyperion, new study opportunities emerge. The goal of this study was to use remote sensing and GIS techniques 
to map the silica sand deposits in Jordan. The Energy and Minerals Regularity Commission (EMRC) conducted a field 
investigation for three sites of silica sand (Ras El-Naqab, Qa' El-Disi, and the Al-Jayoshia).
Samples were collected from the exposed surfaces for laboratory analysis (mineralogy and chemistry). The results confirmed 
that Si and quartz are the main components of the samples. The spectral signature of silica sand from sampled sites was 
derived from EO-1 Hyperion and Sentinel-2 images and then compared with the spectral signature from the USGS library.
The spectral signature of the EO-1 Hyperion images was close to the USGS library's spectral signature and then used as 
training sites for mapping silica sand using the Sentinel-2 images. The end results a map of silica sand in Jordan based 
on both types of images. The study revealed that southern Jordan is abundant in silica sand more than documented in the 
literature. The integration of hyperspectral data (EO-1 Hyperion) and multispectral data (Sentinel-2) is an effective approach 
in mapping Earth minerals meaning that full coverage of the study area with hyperspectral images is not required, eventually, 
cost savings.
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sand exactly, which may ease the process of accessibility 
and investment. Besides, such techniques are rarely used in 
mineral exploration locally. The study approach is based on 
utilizing the properties of the electromagnetic spectrum in 
Sentinel-2 and EO-1 Hyperion imageries.

Silica sand in Jordan is described by its exposure on the 
surface, effectively mineable by open-pit mining, and low 
content of impurities and heavy minerals, which means it has 
a high level of purity that facilitates processing and thus gets 
high value-added products (Madanat et al., 2014). Silica sand 
deposits in Jordan, belong to the Disi Sandstone Formation 
of the lower Ordovician age, and the Kurnub Sandstone 
Formation of the Lower Cretaceous age which are exposed in 
the south of Jordan (Figure 1). Some of extremely noteworthy 
silica sand deposits are known from five sites: Ras El-Naqab, 
Qa’ El-Disi, Wadi Siq, Al Jayoshia area, and Petra. The most 
important one is Ras El-Naqab (Mohsen, 2016). The layers 
of silica sand exposed in the areas of Ras El- Naqab and Qa’ 
El-Disi are within the sediments of the Lower Ordovician 
period while the areas of Al-Jayoshia and wadi Al-Siq are 
in the rocks of the Lower Cretaceous period. The NRA has 
estimated the reserves in the Ras El- Naqab area at more than 
10 billion metric tons. The local consumption of silica sand 
is limited to the industries of white cement, ceramics, and 
plumbing molds (Khoury, 2012). 

Madani (2011) mapped the basement rocks and the 
barite mineralization exposed at the El Hudi area in Egypt 
using the processed short-wave infrared bands of ASTER. 
Results showed that garnetiferous muscovite granites have 
gray image signatures on 5/4 band ratio images whereas 
pegmatite’s and postgranitic dykes have black image 
signatures. Results at the northern Death Valley site (Kruse, 
2013) established that data from the EO-1 Hyperion SWIR 
spectrometer (2.0 – 2.4 µm) can be used to produce useful 
mineralogic information. Comparison of EO-1 Hyperion data 
to airborne hyperspectral data (AVIRIS) shows that EO-1 
Hyperion provides the ability to remotely map basic surface 
mineralogy. Minerals mapped at this site include calcite, 
dolomite, muscovite, hydrothermal silica, and zeolites. 
Kryniecka (2015) detected sandbars for a selected section of 
the Lower Vistula (Wisła) river with the use of Sentinel-2 
Level 2A optical images. For multispectral images, water 
indices were used to separate sandbars from water. The 
analyses have shown that it is possible to detect sandbars in 
the river channel based on Sentinel-2 satellite data. Harahsheh 
(2016) used Landsat-8 to identify and map the lithological 
units in northern Jordan. She applied different methods 
including false color analysis and different band ratios to 
minimize noise fraction, image classification, filtering, and 
lineament extraction. Ibrahim et al., (2018) utilized samples 
from drill holes extracted from Tiebaghi, New Caledonia. 
The chemical composition and the hyperspectral reflectance 
of each sample were obtained. With the resulting regression 
models, the mineral chemistry of an outcrop in the vicinity 
of the drill holes was mapped by a scene of Sentinel-2. The 
work showed the great potential of free satellite imagery 
in mapping the chemical characteristics of minerals and 
rocks. El Atillah et al. (2019) investigated the use of different 

satellite data, such as Sentinel-2A multispectral imagery, 
in order to direct the prospection program in an efficient 
manner, saving both time and cost. The image processing 
methods of Landsat 7, 8, and the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) 
were used to create methods for Sentinel-2A images. The 
assembly of lithological, structural, and hydrothermal 
alteration data gave an idea of the mineralogy of the study 
area. The validity of the results was tested by comparison 
with the field data and the geological maps of the studied 
site. Aldiri et al, (2020) provided a comprehensive review of 
the use of the Landsat-8 and Sentinel-2 multispectral sensors 
in mineral exploration. Landsat-8 and Sentinel-2 data 
presented effective and accurate mapping tools for mineral 
exploration. Both sensors identified iron oxides and Al-OH 
absorption features, in addition to silicate and carbonate 
minerals. Alsaleh (2022) assessed the spatial variability of 
soil properties using hyperspectral remote sensing data, N. 
Jordan.
2. Methodology 

2.1 Samples collection and analysis

2.2 Remote sensing datasets

Thirty surface samples of silica sand were collected 
from three sites (Ras El-Naqab, Qa' El-Disi, and Al Jayoshia) 
defined by the Natural Resources Authority (Figure 1).  The 
samples were randomly selected from each site based on 
the researcher’s field observations taking into consideration 
surficial features such as color and grain size. The location of 
samples was recorded by Garmin GPSMAP 60Cx handheld 
GPS. The samples were undergone wet sieving 100 g of 
dried sediment was sieved with an aperture of 63 microns 
to separate mud. The fine fraction (less than 63 m) was then 
analyzed using an XRD and XRF Analyzer X-ray diffraction 
and X-ray fluorescence to determine their chemical and 
mineralogical composition.

The current work used the multispectral Sentinel-2A 
and hyperspectral EO-1 Hyperion remote sensing datasets 
to map silica sand in Jordan. Eighteen Sentinel-2 images 
were required to cover the whole country, whereas only 3 
Hyperion images were found that partially covered the study 
area (Figure 2) but were quite enough given the presence of 
silica sand in the south of Jordan (Table 1).

All Sentinel-2 images acquired in August 2020, were 
downloaded with a radiometric resolution of 16 bits. All 
bands except band 10 were used for analysis. The sites of 
sampling areas were used as ground truth points for the 
classification of the remote sensing data.

Table 1. Characteristics of Sentinel-2 and EO-1Hyperion images.

Sentinel-2 EO-1 Hyperion

Type of sensor Multispectral Hyperspectral

Number of bands 
(range of wavelength)

13 bands
(0.4-2.2µm)

242 bands
(0.4-2.5 µm) 

Number of used 
scenes 18 3 

Spatial resolution 10 - 60 m 30 m

Swath width 290 km 7.7 km
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2.3 Image pre-processing

2.4 Remote sensing data analysis 

Image pre-processing prior to the analysis included 
geometric correction, radiometric correction, atmospheric 
correction, mosaicking, and stacking. However, Sentinel-2 
images did not need any type of correction. Because of the 
pseudo projection of EO-1 Hyperion images, the images 
have been re-projected to UTM Zone 36N. To calibrate and 
compensate for inaccuracies in the pixel values, the flash 
tool in ENVI software was used to perform radiometric 
and atmospheric corrections, because of the improperly 
calibrated detector on the EO-1 Hyperion push broom 
scanner (HARRIS, 2021). 

Hyperspectral imagers are usually affected by noise 
during acquisition and transmission (Skauli, 2011; Acito et 
al. 2011). The imagery, contaminated by noise, may cause 
failures in information extraction and image interpretation. 
EO-1 Hyperion has 242 bands. The bands (1-7), (58-76), (225-
242) are already set to values of zero (Barry, 2001). Other 
bands such as (121-126), (167-180), (222-224) have severe 
noise that corresponds to strong water vapor absorption, so 
those bands are typically removed from processing (Dat et 
al, 2003). Minimum noise fraction was used to determine the 
inherent dimensionality of image data to segregate noise in 
the data, and to reduce the computational requirements for 
subsequent processing (Boardman and Kruse, 1994).

Sentinel-2A didn't need radiometric or atmospheric 
correction because ESA supplies a processor that performs 
atmospheric correction on Sentinel-2 data with worldwide 
coverage (Sentinel Hub, 2021). A color composite (stacking) 
was used to create a single raster from multiple bands of 
Sentinel-2A and EO-1 Hyperion, then, the mosaic was 
created using Seamless Mosaic workflow in ENVI software.

Kuching (2007) found that the most accurate method 
of classification of hyperspectral images was maximum 
likelihood classification. Therefore, the Hyperion images 
were classified using this method. But, before classification, 
matched filtering (MF) was adopted to find the abundances 
of endmembers such as silica sand using partial unmixing.

This method of supervised categorization necessitates the 
selection of a target region (ROI). The sampled sites were in 
the province of Scene 1 (Table 2) of the EO-1 Hyperion images 
from which the electromagnetic spectrums were captured 
and used as training sites for the mapping silica sand zones in 
all scenes of the Hyperion images. The color composite RGB 
(29 20 10) was chosen to read the electromagnetic signature. 
The large number of bands in the EO-1 Hyperion images 
increases the ability to distinguish the desired minerals. The 
more bands, the more pronounced the curve (the signature). 

USGS (2021) (Table 2 and Figure 2).

Three EO-1 Hyperion images only that were acquired 
during the period 2002-2005 were available for free from the 

Figure 1. Samples of silica sand superimposed on Sentinel-2 image 
of Jordan (RGB 432).

Figure 2. The EO-1 Hyperion images used in this study with true 
colors RGB (29 20 10).

Table 2. EO-1 Hyperion scenes used to read the electromagnetic 
signatures.

Scene number Id Acquisition Date

Scene1 EO1H1740382003253110KZ 10 September 2003

Scene2 EO1H1740392002275110PY 2 October 2002

Scene3 EO1H1740392005258110KK 15 September 2005
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On the other hand, it was not possible to identify the 
characteristic features clearly by using Sentinel-2. This is 
due to the very limited number of bands and the adsorption/
reflectance features were concentrated at 0.9 micrometers 
and less (ESA, 2021). To distinguish silica sand, absorption 
will appear around wavelengths of 1.4 micrometers and 1.9 
micrometers due to its hydroxide content (Viallefont-Robinet, 
2019).

A supervised classification has been used. Scene 1 of the 
EO-1 Hyperion satellite was classified based on its mineral 
content according to Alnawafleh et al. (2013) mineral map 
(Figure 3).  The second step was to utilize the zones of silica 
sand identified from the Hyperion images as training sites 
for Sentinel-2 images, bearing in mind that Sentinel-2 images 
cover the whole country. The ROI (region of interest) was 
taken in Sentinel-2 Jordan images based on the silica sand 
zones that were obtained from the classification of the Al-
Jayoshia image of the EO-1 Hyperion satellite, in addition to 
the locations of samples of clay minerals that were taken and 
analyzed during the field study and based on the mineral map 
of Jordan from Alnawafleh et al. (2013).

To affirm the results of the mapping, validation was carried 
out using two methods:(1) Validation using electromagnetic 
spectrum: The spectral signature from mapped zones of silica 
sand based on either image (Sentinel-2 or Hyperion) could 
be compared with the signature of the silica from the USGS 
library, and (2) Validation using Google Earth: Google Earth 
was used to ascertain the nature of the areas where silica 
sand was mapped by visual interpretation and feasible areas 
for mining. A further step was carried out for comparison 

The highest proportion of SiO2 was found in Ras El-
Naqab (97.80%), followed by the AL-Jayoshia area (86.90%) 
and Qa' El-Disi (83.45%). The existence of impurities, 

notably in the form of iron, titanium, and calcium oxides, 
accounts for the varying percentages. The most important 
impurity is iron oxide. These contaminants present 
significant challenges in a variety of applications, including 
the manufacture of colorless or optical glass, optical fibers, 
and high-purity ceramics (Chammas, 2001).

Iron (III) oxide percentages were 0.15 % in Ras El-Naqab, 
1.16 % in Al-Jayoshia, and 5.54 % in Qa' El-Disi. These results 
are good, according to EMRC (2014), when considering that 
the samples were obtained from the surface and evaluated in 
their natural state, which usually yields a larger percentage 
of contaminants. Chemical weathering rises as a result of 
this exposure, resulting in a high percentage of impurities 
such as iron (III) oxide. 

When comparing our XRF findings to those of the EMRC 
study (2019), it is found that SiO2 and Fe2O3 concentrations 
are98.72 % and 0.04 %in Ras El- Naqab, and 96.5 % and 
0.025 %, in Qa' El-Disi, respectively. The higher quality of 
silica sand obtained by the Energy and Minerals Regularity 
Commission (EMRC) is attributed to the subsurface samples 
and samples washing by wet sieving. 

purposes. The mapped zones of silica sand from both sensors 
were intersected to find out the extent of overlap areas

Figure 4. XRD diagram analysis of <63 micron for (A) Ras El-
Naqab, (B) Qa’ El-Disi and (C) Al-Jayoshia sediments.

Figure 3. Jordan mineral map (Alnawafleh et al. 2013).

3. Discussion and Results.
3.1 XRF and XRD analysis

The fine fraction of silica sand from Ras El-Naqab region, 
Qa' El-Disi, and AL-Jayoshia (Figure 4) contain quartz as the 
major mineral and very minor amounts of calcite, berlinite, 
despujolsite, and algodonite, (Table 3 and Figure 4). These 
minerals have been previously linked to quartz.

Sample site SiO2% Cl % CaO% TiO2% K2O% Fe2O3% Total%

Ras El-Naqab 97.8 0.85 0.37 0.39 ----- 0.15 ≈100%

Qa’ El-Disi 83.45 ------- 4.23 1.69 4.96 5.54 ≈100%

Al Jayoshia 86.97 6.87 4.32 0.60 ----- 1.16 ≈100%

Table 3. XRF analysis for Ras El-Naqab, Al Jayoshia, and Qa’ El-Disi sediments.
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3.2 Spectral signature analyses of silica sand
The signatures of three silica sand samples from Ras 

El-Naqab, Al-Jayoshia, and Qa' El-Disi are represented by 
Sentinel-2 spectrum signatures (Figure 5). The signature 
from these samples was insufficient to determine the mineral 
composition because it only reveals the spectrum absorption 
of the iron (III) oxide.

Therefore, high spectral resolution data is essential for 
this purpose, and hyperspectral technologies play a vital 
role in this regard. One sample only (Al-Jayoshia) was 
found within the spatial extent of EO-1Hyperion images 
(scene 1), just (Figure 1). Its spectral signature was extracted 
and compared to that of silica sand from the USGS library 
(Figure 6).

(Figure 9). The spectral signatures of the mapped zones 
of silica sand from these images were investigated against 
signatures of silica sand from the USGS library.

The signature in EO-1 Hyperion images had spectral 
signature behavior similar to that of a silica sand signature 
from the USGS library, taking into account the number of 
bands, where the library spectrum has 3375 bands, whereas 
the number of Hyperion bands used is only 175 due to the 
removal of some bands with zero values. The USGS library's 
silica sand spectral profile (Figure 6) revealed absorptions 
at 0.9, 1.4, and 1.9 μm. The quantity of the element or 
compound that triggered the absorption is proportional to 
the depth of absorption. The absorption patterns around 
0.9 to 1.2 μm were caused by iron oxide concentration, 
whereas the absorption features around 1.4 to 1.9 μm were 
caused by the hydroxide ion trapped in the silicates, which 
form a characteristic silica sand impression. Clay minerals 
and carbonate content are responsible for the absorption 
properties between 2 and 2.5 μm. The EO-1 Hyperion 
image (scene 1) was categorized using the extracted spectral 
signature based on the maximum likelihood method (Figure 
7). The identified zones of silica sand from this process were 
used as training sites for Sentinel-2 classification (Figure 8). 
The last step was using the mapped zones of silica sand from 
the Sentinel-2 images as training sites for the classification 
of the other two EO-1Hyperion images (Scene2) and (Scene3) 

Figure 5. Sentinel-2 spectral signature for Ras El-Naqab (a), Al-
Jayoshia (b), and Qa’ El-Disi (3). The absorption around 0.9 μm is 

for iron oxide.

Figure 7. Silica sand zones (yellow color) extracted from EO-1 
Hyperion image (scene 1).

Figure 6. Spectral signature from (Scene1) EO-1Hyperion image (A) 
with spectral signature for silica sand from the USGS library (B).
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3.3 Validations of results
The existence of silica sand was established by 

comparing the electromagnetic spectrum from the mapped 
areas, which was very close to the silica sand spectrum from 
the USGS library (Figure 6). An overlay GIS operation was 
carried out to calculate the degree of intersection (overlap) 
between zones of silica sand from both images (Hyperion 
and Sentinel) (Figure 10) and found to be 57 %, meaning that 
these zones were identified using both images. Considering 
the disparities in image characteristics (spectral and spatial 
resolution), the outcome is considered acceptable. Moreover, 
the visual interpretation of Google Earth images (Figure 
11) indicated the presence of silica sand in terms of texture, 
brightness, topography, and land cover. Size from 50.2 km2 

in Qa' El-Disi to 72.7 km2 in Ras El-Naqab.

Matched Filtering (MF) is also used to validate work by 
finding the abundance of user-defined endmembers using a 
partial unmixing. This technique maximizes the response 
of the known endmember and suppresses the response of 
the composite unknown background, thus matching the 
known signature. It provides a rapid means of detecting 
specific materials based on matches to library or image 
endmember spectra and does not require knowledge of all 
the endmembers within an image scene. The Matched Filter 
(MF) produced a succession of grayscale images, one for 
each endmember specified (silica sand). In the Hyperion 
photos, silica sand appeared as bright zones in the higher tail 
of the histogram (Figure 12).

Figure 9. Silica sand zones extracted from Sentinel-2 image overlay 
EO-1Hyperion images (scenes 2 and 3).

Figure 10. Intersect results of overlaying Sentinel-2 and EO-1 
Hyperion silica sand zones.

Figure 11. Prospected silica sand in Qa’ El-Disi (a), Ras El-Naqab (b) 
as seen on Google Earth.

Figure 8. Silica sand zones (yellow color) extracted from Sentinel-2.
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Figure 12. Matched filter for hyperspectral images from EO-1 
Hyperion (scene 2, scene 3). Silica sand determine as endmember. 

Silica sand appears as bright areas.

Figure 13. (A) Spectral profile for Ras El-Naqab. The absorption rate 
was down to (2.9) at0.9μm and to (4.4) at 2.3μm, (B) Spectral profile 
for the Al-Jayoshia region, with absorption down to (2.1) at 0.9μm 

and to (3.4) at 2.3μm.

3.6 The spectral signature and mineral content
The absorptions areas at 0.9 μm and 1.2 μm refer to the 

iron oxide, 1.4 μm and 1.9 μm absorption are due to OH or 
H2O, whereas absorptions at 2.0 μm to 2.5 μm at Qa' El-
Disi, Al-Jayoshia, and Ras El-Naqab are indicators of clay 
minerals and carbonates. These absorptions in Qa' El-
Disi, Al-Jayoshia, and Ras El-Naqab were different in the 
electromagnetic spectrum (Figure 13). The greatest iron 
oxide ratio was 5.45% in Qa' El-Disi, followed by 1.16% in 
Al-Jayoshia, and 0.15 % in Ras El-Naqab. These iron oxide 
ratios are related to color changes in samples that can be seen 
visually. The higher the iron oxide level, the darker the red 
hue. The shape of the signature is affected by the quantity of 
iron oxides; the higher the concentration of iron oxides, the 
higher the absorption rate at 0.9 μm to 1.2 μm in the spectral 
profile. The absorption of iron oxides in the Al-Jayoshia area 
appears to be stronger than in the Ras El-Naqab area. The 
quantity of clay minerals and carbonate also impacts the 
shape of the spectral signature; the more clay minerals and 
carbonate in the spectral profile, the higher the absorption 
rate at 2.0 μm to 2.5 μm. The percentage of carbonate in Ras 
El-Naqab was 0.37 %, while it was 4.32 %in Al-Jayoshia.

4. Conclusion

This study employed hyperspectral EO-1 Hyperion and 
multispectral Sentinel-2 data to map silica sand in Jordan. 
Field investigation of known verified locations was used 
as reference points (Ras El-Naqab, Qa' El-Disi, and the Al-
Jayoshia) in this study. Samples were obtained from the 
exposed surfaces and analyzed in the lab for the mineral 
content and chemical composition. The results showed that 
quartz and silica are the predominant materials in all sites. 
The presence of impurities such as iron oxides accounts for 
the varied percentages, which are 0.15 % in Ras El-Naqab, 
1.16 % in Al-Jayoshia, and 5.54 % in Qa' El-Disi. These 
results are good indicators that Ras El- Naqab is promising 
for silica sand mining.

This study proved the potential integration of 
hyperspectral data and multispectral remote sensing data for 
mineral mapping. The large coverage by Sentinel 2 benefited 
from the high-resolution data from Hyperion for mapping 
the silica sand in Jordan. Despite the noise in the EO-1 
Hyperion data, we were able to map silica sand after image 
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processing. This approach saves the cost of acquiring costly 
hyperspectral data. However, map validation samples must 
be collected and analyzed. Remote sensing data is useful for 
mapping minerals because it eliminates field labor and the 
need for large numbers of samples to be analyzed. The study 
confirmed the presence of silica sand in south Jordan, but 
with larger areas, at least 89 km2. This may shed light on the 
potential mining of silica sand which can be used in a variety 
of industries due to its surface exposure and ease of access, 
as well as its high purity in the natural environment.  Other 
tools and techniques can be applied in this area of research 
such as the use of thermal bands field spectroradiometer.
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