
JJEES
Jordan Journal of Earth and Environmental Sciences

Landslide Hazard Zonation Using Multivariate Statistical Models 
in the Doab Samsami Watershed, Chaharmahal Va Bakhtiari 

Province, Iran
Ebrahim Karimi-Sangchini*1, Seyed-Naim Emami2,

Mohsen Shariat-Jafari3, Farzad Rezazadeh4, Heidarali Raeisi5

Abstract

1. Introduction

Landslides are one of the most important natural 
hazards, causing enormous financial and life losses on an 
annual basis worldwide (Kelarestaghi and Ahmadi, 2009). 
Landslides are amongst the most catastrophic natural 
hazards in mountainous terrains. The study of landslides 
has received attentions throughout the world mainly due 
to the increasing awareness regarding the socio-economic 
impact of landslides, as well as, the increasing pressure of 
urbanization on the mountainous landscape (Aleotti and 
Chowdhury, 1999). Each year, the phenomenon of landslides 
occurs around many parts of the world including Iran. By 
the end of September 2007, 4,900 landslides were recorded 
and the losses resulting from mass movements in Iran were 
estimated at about 317 million US dollar (Pourghasemi et al., 
2013). The burying of Abikar village of the Charmahal Va 
Bakhtiari Province in the spring of 1997 is one of the most 
obvious catastrophic examples of landslide damages in the 
Iran. The volume of material transported by this landslide 

was 9 million cubic meters. Abikar village with all its 55 
residents was buried under the materials of the landslide. 
Hence, landslide susceptibility mapping can be one of the 
preliminary steps to minimize such costs (Regmi et al., 
2014). Also, landslide susceptibility assessment is found 
to be a crucial process for the prediction and management 
of natural disasters. Additionally, it can be considered as a 
necessary step for integrated watershed management, hazard 
mitigation, natural and urban planning in government 
policies worldwide (Dahal et al., 2008; Kayastha et al., 2012). 
The identification and classification of landslide-prone 
areas and the susceptibility zonation is a great step in the 
evaluation of environmental hazards and can make a great 
contribution to the watershed management (Sakar, 1995). 
Landslide susceptibility assessment is conducted using three 
approaches, namely the qualitative, semi-quantitative, and 
quantitative approaches (Lee and Jones, 2004). Quantitative 
methods are inspired by mathematical logic, the correlation 
between factors, and landslide occurrence which include 
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The Doab Samsami watershed is located in the Chaharmahal Va Bakhtiari province, and serves as one of the main tributaries 
of the Karoon River Basin. Using aerial photos interpretation and field studies, a landslide distribution map for the study area 
was prepared. Thirty-seven cases of landslide incidents were observed. Nine parameters including elevation, slope, aspect, 
lithology, distances from fault, stream and roads, land use, and annual precipitation were chosen as landslide determinant 
factors. Potential landslide hazard maps were prepared using the multivariate stepwise regression model and the logistic 
multivariate regression model; which were subsequently compared with field data. ROC Index was also considered for the 
models’ accuracy assessment. According to the research results, the logistic multivariate regression model was considered 
as the superior model for Doab Samsami watershed with an ROC equal to 0.865. Furthermore, the results revealed that 
about 46% of the watershed area was located in high and very high hazard zones among others. The obtained landslide 
susceptibility maps may be promising in appropriate watershed management practices and for a sustainable development in 
the regions characterized by conditions similar to the study area.  
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Figure 1.  Location map of the study area.
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bivariate regression analysis (Guzzetti 2002; Nandi and 
Shakoor, 2009; Yilmaz et al., 2012; Bijukchhen et al., 2013; 
Jaafari et al., 2014; Youssef et al., 2015b), logistic regression 
(Ayalew and Yamagishi, 2005; Park et al., 2013; Karimi 
Sangchini et al., 2014; Karimi Sangchini et al., 2015; Dou et 
al., 2015a; Dou et al., 2015b), Certainty Factor Model (Dou 
et al., 2014; Dou et al., 2015a ), genetic algorithm (Dou et 
al., 2015c), fuzzy logic (Gupta et al., 2008; Tangestani 2009; 
Pourghasemi et al., 2012), and artificial neural network 
model (Caniani et al., 2008; Pradhan et al., 2010; Zare et al., 
2013; Polykretis et al., 2015; Dou et al., 2015b). Qualitative 
methods are based on expert opinions (Rahman and Saha, 
2008; Karimi Sangchini et al., 2011; Karimi Sangchini et 
al., 2016). Qualitative methods which utilize weighting and 
rating approaches are known as semi-quantitative methods 
(Yalcin, 2008). Some examples of such methods are the 
analytic hierarchy process (AHP) (Yalcin, 2008; Komac, 
2006; Rahman and Saha, 2008; Ercanoglu et al., 2008; 
Akgun and Turk, 2010; Pourghasemi et al., 2012; Awawdeh 
et al., 2018) and weighted linear combination (Gorsevski et 
al., 2006; Kouli et al., 2010). Traditionally, the multivariate 
logistic regression approach has been applied by various 
researchers (Yesilnacar and Topal, 2005; Nandi and Shakoor, 
2009; Felicisimo et al., 2013; Karimi Sangchini et al., 
2016). In the previous research works, the abovementioned 
models had been used in a separate manner. The proposed 
methodologies use both expert opinions and ground truth 
simultaneously.

To generate statistics-based susceptibility maps, many 
modeling approaches for landslide hazard prediction can be 
applied. Logistic regression and discriminant analysis are 
the most frequently used models (Brenning, 2005). Logistic 
regression and statistical models have been developed using 
the geographic information system (GIS) for landslide 
hazard zonation (Lee et al., 2010). The multivariate approach 
was adopted by various practitioners worldwide (Yesilnacar 
and Topal, 2005; Nandi and Shakoor, 2009; Felicisimo et 
al., 2013). In the present research, landslide susceptibility 
mapping with a logistic regression and stepwise multivariate 
statistical models were used to determine the landslide-prone 
areas for the sake of landslide hazard management in Doab 
Samsami watershed.

the average annual precipitation in the study area is 970 mm. 
This watershed is nestled in the middle of Zagros Mountains. 
Subsequent erosion has removed erodible rocks, such as 
mudstone, and siltstone while leaving behind harder rocks 
exposed, such as limestone, and dolomite. This differential 
erosion has formed the linear ridges of the Zagros Mountains. 
Rangelands account for 66 % of this region and the rest of the 
area is covered by orchards, forests, agricultural and rocky 
lands.

2. Materials and Methods
2.1. Study Area

 2.2. Landslide Inventory Map

2.3. Selection and Effective Factor Classification

2.3.1. Landslide Determinant Factors 

2.3.2. Topographical Factors
  Doab Samsami Watershed is spanned over coordinates 

421386 to 447042 E and 3550345 3568932 N, covering 
an area of 276.3 km2 in the Chaharmahal Va Bakhtiari 
Province, southwest of Iran (Figure 1). This watershed is one 
of the major sub basins of the Karoon River. The elevation in 
the study area varies from 1,775 to 3,825 m above sea level. 
According to the Iran meteorological organization report, 

  Landslide inventory maps are prepared by gathering 
the information and data on landslides, or by analyzing the 
data obtained from remote sensing and GIS techniques. In 
the current research, a landslide inventory map was prepared 
using field reconnaissance, local information, and aerial 
photograph interpretation.

 According to the literature review and field conditions 
of Doab Samsami watershed, a total of nine factors 
including altitude, slope percentage, slope aspect, lithology, 
distance from faults, rivers, village and roads, land use, 
and precipitation amount were chosen as main determinant 
factors of land sliding. In the next stage, the area and 
landslide percentage, the density ratio, and landslide density 
percentage, in each class of these nine landslide factors, were 
calculated.

Those determinant factors in the occurrence of a landslide 
are described below (Table 1 and Figure 2). . Vector-type 
spatial database was extracted through transforming such 
factors using the ArcGIS 9.3 (ESRI 2008). The resolutions of 
the girds of the causative factors are 30×30 meters.

A digital elevation model (DEM) was created from 
20m interval contours and survey base points which were 
extracted from the 1: 50,000-scale topographic maps 
(Cartographic Center of Iran, 2003). Based on this DEM, 
altitude, slope percentage, and slope aspect were prepared. 



Altitude was classified into eleven classes with 200 m 
intervals (Karimi Sangchini et al., 2016). Slope percentage 
was grouped in six classes of 0-5°, 6-15°, 16-25°, 26-35°, 36-
45°, and >45° (Kelarestaghi and Ahmadi, 2009). Slope aspect 
was classified into eight classes of N, NE, E, SE, S, SW, W, 
and NW. The slope conditions have received great attention, 
as slope configuration and steepness play an important role 
in landslide occurrence (Table 1 and Figure 2 (a-c)).
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2.3.3. Lithology

2.3.4. Distance from Faults, Streams, and Roads

2.3.6. Precipitation

2.3.5. Land Use

The underlying geology is found to be one of the 
most substantial factors for landslide modeling. Different 
geological formations are characterized by various 
compositions and structures which in turn contribute 
to the strength of the material. In the current research, 
a 1: 100,000-scale geological map (Geological Survey 
and Mineral Explorations of Iran, 1996) was applied to 
lithology mapping which was then classified according 
to the lithological units (type) into eleven groups (Table 1 
and Figure 2d). Geological formations in this watershed 
were fossiliferous marly limestones with intercalations 
of marls and sandy limestones (OM2), white nummulitic 
limestones, marly limstones and dolomitic limestones 
(EO), mainly orbitolina limstones, locally evaporites in 
the lower part (K), shale and marls interbedded with marly 
limstones containing Ammonites and Inceramuses (K8), 
marly fossiliferous limestones and thin sandy argillaceous 
limestones (K7), recent terraces and recent alluviumes (Qal), 
old terraces deposits (Qt and QR), carbonate-dominated 
sedimentary package with shale-marl intervals (Pd), and red 
conglomerates (mainly chert pebbles), sandstones (locally 

A topographical map was used to extract distance to 
streams, whereas, a distance to faults map was calculated 
drawing upon the geological map of the study area 
(Pourghasemi et al., 2012). On the other hand, the distance to 
roads map was prepared using a road map of the study area. 
The distance to faults factor was classified into five classes 
of 0-500, 500-1300, 1300-2300, 2300-3500, and >3500 m. In 
the case of distance from streams, there were seven classes 
with 50m intervals. As for the factor of distance from roads, 
there were six classes of 0-75, 75-150, 150-225, 225-300, 
300-500, and >500 m (Table 1 and Figure 2e-g).

There is no doubt that precipitation is the most important 
triggering factor in landslides (Naghibi et al., 2015). This 
factor was mapped using Inverse Distance Weighting (IDW) 
Interpolation method and classified into five classes of 850-
1000, 1000-1200, 1200-1400, 1400-1600, and >1600 mm in 
the study area (Table 1 and Figure 2i) (Karimi Sangchini et 
al., 2014).

with volcanic intercalations), and silstone with evaporites 
intercalations (E). 

The land use map was developed using Landsat images 
provided by Iranian forest, rangeland, and watershed 
management (http://www.frw.org.ir/pageid/34/language/ 
en-US/Default.aspx). Five classes of rocky land, poor range, 
medium range, irrigated farming, and dry farming were 
detected in the study area (Karimi Sangchini et al., 2016) 
(Table 1 and Figure 2h).

Table 1. Calculation of the final susceptibility value of each identified land unit

Data layers Total
area (ha)

% of total
area (A)

area of
Landslide

% of area
landslide (B)

Area density
value

Aspect

N 1719.99 6.23 30.38 4.79 -5.32

NE 7715.25 27.93 262.21 41.30 11.01

E 2518.976 9.12 125.04 19.70 26.66

SE 2455.739 8.89 49.94 7.87 -2.64

S 4798.129 17.37 85.43 13.46 -5.17

SW 4676.126 16.93 59.57 9.38 -10.24

W 1370.671 4.96 0.00 0.00 -22.98

NW 2372.664 8.59 22.29 3.51 -13.58

Elevation (m)

1775-1900 461.9037 1.67 57.97 9.13 102.53

1900-2100 2932.099 10.61 289.84 45.65 75.87

2100-2300 5057.21 18.30 172.11 27.11 11.05

2300-2500 4882.323 17.67 25.45 4.01 -17.77

2500-2700 4593.758 16.63 53.76 8.47 -11.28

2700-2900 3952.74 14.31 35.73 5.63 -13.94

2900-3100 2929.929 10.61 0.00 0.00 -22.98

3100-3300 860.752 3.12 0.00 0.00 -22.98

3300-3500 1532.477 5.55 0.00 0.00 -22.98

3500-3700 382.009 1.38 0.00 0.00 -22.98

3700-3825 43.83642 0.16 0.00 0.00 -22.98

Slope (%)

0-5 201.0076 0.73 21.17 3.33 82.34

6-15 2119.803 7.67 59.33 9.35 5.01

16-25 4522.01 16.37 244.67 38.54 31.13

26-35 2157.286 7.81 112.02 17.65 28.95

36-45 492.5005 1.78 7.39 1.16 -7.97

>45 18136.12 65.65 190.28 29.97 -12.49

Geology units

OM2 449.9949 1.63 3.30 0.52 -15.63

E 190.4042 0.69 0.18 0.03 -22.04

EO 11334.27 41.03 27.59 4.35 -20.54

QR 1297.833 4.70 179.93 28.34 115.66

K 5018.204 18.16 10.84 1.71 -20.82

Qal 201.7005 0.73 46.45 7.32 207.33

Pd 898.8312 3.25 114.50 18.03 104.41

Qt1 542.9987 1.97 85.34 13.44 134.18

Qt2 399.7744 1.45 14.76 2.33 13.95

K8 2948.512 10.67 150.77 23.75 28.16

K7 3555.478 12.87 1.21 0.19 -22.64

distance from fault (m)

0-500 2463.077 8.92 94.81 14.93 15.51

500-1300 3740.476 13.54 192.53 30.33 28.49

1300-2300 4152.376 15.03 141.37 22.27 11.07

2300-3500 6133.214 22.20 114.22 17.99 -4.35

>3500 11139.89 40.32 91.94 14.48 -14.72

distance from stream (m)

0-50 2092.495 7.57 51.84 8.17 1.80

50-100 2011.261 7.28 52.52 8.27 3.14

100-150 1942.973 7.03 51.18 8.06 3.36

150-200 1882.406 6.81 47.21 7.44 2.10

200-300 3563.991 12.90 84.96 13.38 0.86

300-450 4803.816 17.39 106.37 16.76 -0.83

>450 11331.47 41.02 240.77 37.92 -1.73

distance from road (m)

0-75 1583.822 5.73 140.51 22.13 65.74

75-150 1372.74 4.97 125.47 19.76 68.42

150-225 1234.877 4.47 109.28 17.21 65.52

225-300 1134.911 4.11 92.53 14.57 58.55

300-500 2622.979 9.49 121.87 19.20 23.49

>500 19679.09 71.23 45.20 7.12 -20.68

Land use

Rocky land 5512.351 19.95 0.59 0.09 -22.87

Rainfed agriculture 1645.76 5.96 10.04 1.58 -16.88

Irrigated agriculture 2214.199 8.01 155.03 24.42 47.04

Poor range 12072.93 43.70 391.81 61.72 9.48

Medium range 6183.487 22.38 77.39 12.19 -10.46

Precipitation (mm)

780-900 10589.69 38.33 539.27 84.94 27.95

900-1000 7996.283 28.94 69.14 10.89 -14.33

1000-1100 6078.483 22.00 26.45 4.17 -18.63

1100-1200 2292.567 8.30 0.00 0.00 -22.98

1200-1260 671.9949 2.43 0.00 0.00 -22.98
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Data layers Total
area (ha)

% of total
area (A)

area of
Landslide

% of area
landslide (B)

Area density
value

Aspect

N 1719.99 6.23 30.38 4.79 -5.32

NE 7715.25 27.93 262.21 41.30 11.01

E 2518.976 9.12 125.04 19.70 26.66

SE 2455.739 8.89 49.94 7.87 -2.64

S 4798.129 17.37 85.43 13.46 -5.17

SW 4676.126 16.93 59.57 9.38 -10.24

W 1370.671 4.96 0.00 0.00 -22.98

NW 2372.664 8.59 22.29 3.51 -13.58

Elevation (m)

1775-1900 461.9037 1.67 57.97 9.13 102.53

1900-2100 2932.099 10.61 289.84 45.65 75.87

2100-2300 5057.21 18.30 172.11 27.11 11.05

2300-2500 4882.323 17.67 25.45 4.01 -17.77

2500-2700 4593.758 16.63 53.76 8.47 -11.28

2700-2900 3952.74 14.31 35.73 5.63 -13.94

2900-3100 2929.929 10.61 0.00 0.00 -22.98

3100-3300 860.752 3.12 0.00 0.00 -22.98

3300-3500 1532.477 5.55 0.00 0.00 -22.98

3500-3700 382.009 1.38 0.00 0.00 -22.98

3700-3825 43.83642 0.16 0.00 0.00 -22.98

Slope (%)

0-5 201.0076 0.73 21.17 3.33 82.34

6-15 2119.803 7.67 59.33 9.35 5.01

16-25 4522.01 16.37 244.67 38.54 31.13

26-35 2157.286 7.81 112.02 17.65 28.95

36-45 492.5005 1.78 7.39 1.16 -7.97

>45 18136.12 65.65 190.28 29.97 -12.49

Geology units

OM2 449.9949 1.63 3.30 0.52 -15.63

E 190.4042 0.69 0.18 0.03 -22.04

EO 11334.27 41.03 27.59 4.35 -20.54

QR 1297.833 4.70 179.93 28.34 115.66

K 5018.204 18.16 10.84 1.71 -20.82

Qal 201.7005 0.73 46.45 7.32 207.33

Pd 898.8312 3.25 114.50 18.03 104.41

Qt1 542.9987 1.97 85.34 13.44 134.18

Qt2 399.7744 1.45 14.76 2.33 13.95

K8 2948.512 10.67 150.77 23.75 28.16

K7 3555.478 12.87 1.21 0.19 -22.64

distance from fault (m)

0-500 2463.077 8.92 94.81 14.93 15.51

500-1300 3740.476 13.54 192.53 30.33 28.49

1300-2300 4152.376 15.03 141.37 22.27 11.07

2300-3500 6133.214 22.20 114.22 17.99 -4.35

>3500 11139.89 40.32 91.94 14.48 -14.72

distance from stream (m)

0-50 2092.495 7.57 51.84 8.17 1.80

50-100 2011.261 7.28 52.52 8.27 3.14

100-150 1942.973 7.03 51.18 8.06 3.36

150-200 1882.406 6.81 47.21 7.44 2.10

200-300 3563.991 12.90 84.96 13.38 0.86

300-450 4803.816 17.39 106.37 16.76 -0.83

>450 11331.47 41.02 240.77 37.92 -1.73

distance from road (m)

0-75 1583.822 5.73 140.51 22.13 65.74

75-150 1372.74 4.97 125.47 19.76 68.42

150-225 1234.877 4.47 109.28 17.21 65.52

225-300 1134.911 4.11 92.53 14.57 58.55

300-500 2622.979 9.49 121.87 19.20 23.49

>500 19679.09 71.23 45.20 7.12 -20.68

Land use

Rocky land 5512.351 19.95 0.59 0.09 -22.87

Rainfed agriculture 1645.76 5.96 10.04 1.58 -16.88

Irrigated agriculture 2214.199 8.01 155.03 24.42 47.04

Poor range 12072.93 43.70 391.81 61.72 9.48

Medium range 6183.487 22.38 77.39 12.19 -10.46

Precipitation (mm)

780-900 10589.69 38.33 539.27 84.94 27.95

900-1000 7996.283 28.94 69.14 10.89 -14.33

1000-1100 6078.483 22.00 26.45 4.17 -18.63

1100-1200 2292.567 8.30 0.00 0.00 -22.98

1200-1260 671.9949 2.43 0.00 0.00 -22.98

Data layers Total
area (ha)

% of total
area (A)

area of
Landslide

% of area
landslide (B)

Area density
value

Aspect

N 1719.99 6.23 30.38 4.79 -5.32

NE 7715.25 27.93 262.21 41.30 11.01

E 2518.976 9.12 125.04 19.70 26.66

SE 2455.739 8.89 49.94 7.87 -2.64

S 4798.129 17.37 85.43 13.46 -5.17

SW 4676.126 16.93 59.57 9.38 -10.24

W 1370.671 4.96 0.00 0.00 -22.98

NW 2372.664 8.59 22.29 3.51 -13.58

Elevation (m)

1775-1900 461.9037 1.67 57.97 9.13 102.53

1900-2100 2932.099 10.61 289.84 45.65 75.87

2100-2300 5057.21 18.30 172.11 27.11 11.05

2300-2500 4882.323 17.67 25.45 4.01 -17.77

2500-2700 4593.758 16.63 53.76 8.47 -11.28

2700-2900 3952.74 14.31 35.73 5.63 -13.94

2900-3100 2929.929 10.61 0.00 0.00 -22.98

3100-3300 860.752 3.12 0.00 0.00 -22.98

3300-3500 1532.477 5.55 0.00 0.00 -22.98

3500-3700 382.009 1.38 0.00 0.00 -22.98

3700-3825 43.83642 0.16 0.00 0.00 -22.98

Slope (%)

0-5 201.0076 0.73 21.17 3.33 82.34

6-15 2119.803 7.67 59.33 9.35 5.01

16-25 4522.01 16.37 244.67 38.54 31.13

26-35 2157.286 7.81 112.02 17.65 28.95

36-45 492.5005 1.78 7.39 1.16 -7.97

>45 18136.12 65.65 190.28 29.97 -12.49

Geology units

OM2 449.9949 1.63 3.30 0.52 -15.63

E 190.4042 0.69 0.18 0.03 -22.04

EO 11334.27 41.03 27.59 4.35 -20.54

QR 1297.833 4.70 179.93 28.34 115.66

K 5018.204 18.16 10.84 1.71 -20.82

Qal 201.7005 0.73 46.45 7.32 207.33

Pd 898.8312 3.25 114.50 18.03 104.41

Qt1 542.9987 1.97 85.34 13.44 134.18

Qt2 399.7744 1.45 14.76 2.33 13.95

K8 2948.512 10.67 150.77 23.75 28.16

K7 3555.478 12.87 1.21 0.19 -22.64

distance from fault (m)

0-500 2463.077 8.92 94.81 14.93 15.51

500-1300 3740.476 13.54 192.53 30.33 28.49

1300-2300 4152.376 15.03 141.37 22.27 11.07

2300-3500 6133.214 22.20 114.22 17.99 -4.35

>3500 11139.89 40.32 91.94 14.48 -14.72

distance from stream (m)

0-50 2092.495 7.57 51.84 8.17 1.80

50-100 2011.261 7.28 52.52 8.27 3.14

100-150 1942.973 7.03 51.18 8.06 3.36

150-200 1882.406 6.81 47.21 7.44 2.10

200-300 3563.991 12.90 84.96 13.38 0.86

300-450 4803.816 17.39 106.37 16.76 -0.83

>450 11331.47 41.02 240.77 37.92 -1.73

distance from road (m)

0-75 1583.822 5.73 140.51 22.13 65.74

75-150 1372.74 4.97 125.47 19.76 68.42

150-225 1234.877 4.47 109.28 17.21 65.52

225-300 1134.911 4.11 92.53 14.57 58.55

300-500 2622.979 9.49 121.87 19.20 23.49

>500 19679.09 71.23 45.20 7.12 -20.68

Land use

Rocky land 5512.351 19.95 0.59 0.09 -22.87

Rainfed agriculture 1645.76 5.96 10.04 1.58 -16.88

Irrigated agriculture 2214.199 8.01 155.03 24.42 47.04

Poor range 12072.93 43.70 391.81 61.72 9.48

Medium range 6183.487 22.38 77.39 12.19 -10.46

Precipitation (mm)

780-900 10589.69 38.33 539.27 84.94 27.95

900-1000 7996.283 28.94 69.14 10.89 -14.33

1000-1100 6078.483 22.00 26.45 4.17 -18.63

1100-1200 2292.567 8.30 0.00 0.00 -22.98

1200-1260 671.9949 2.43 0.00 0.00 -22.98



Figure 2. Landslide conditioning factors; a aspect, b elevation, c slope percentage, d lithology, e, f and g distance from fault, stream and road 
respectively, h land use, i precipitation. 
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2.4. Landslide Susceptibility Mapping Using Logistic Regression 

2.5. Landslide Susceptibility Mapping Using Stepwise Regression 
Model

2.6. Evaluation of Landslide Hazard Model

Model  In order to determine the zonation of landslide 
susceptibility using logistic statistical regression, the 
landslide density in each class of the nine causative 
parameters was calculated. To this end, through integrating 
maps of several factors, a homogeneous units’ map was 
prepared. Homogeneous units were created by combining all 
the maps of effective factors, and had a unit value in terms 
of the characteristics of the effective factors. After overlying 
the homogeneous units’ map on the landslide distribution 
map, the units of the landslide were specified, and all of the 
homogeneous landslide units were scored by the code (1), 
and all those with no landslide units were scored by the code 
(0). The absence or presence of landslide in the homogeneous 
units being a dependent variable, and the landslide density 
percentage in each class of the nine parameters in units being 
an independent variable were entered in the R statistical 
software. Logistic regression equation is as follows according 
to Ayalew and Yamagishi (2005):

where p is the probability of independent variable (Y), 
p/(1-p) denotes the so-called odds or the likelihood ratio, C0 
is the intercept, C1, C2,….Cn are coefficients (which measure 
the size and the contribution of independent factors (X1, 
X2, ... and Xn) in a dependent variable). Using the density 
of factors as independent variables, and the presence or 
absence of landslides as the dependent variable, is an attempt 
to determine the best equation as follows that is meaningful 
at 0.01 % error level. Using the resulting model, the landslide 
susceptibility map was produced and classified into very 
low, low, medium, high, very high classes.

Y=(- 2.097 +(0.0074)*Aspect +(0.012)
*Precipitation +(0.061)*Elevation +(0.0055)
*Geology -(0.0288)*Fault -(0.1875)*Stream)

To determine the numerical value of qualitative factors in 
different parameters (aspect, land use, and lithology), AHP 
was utilized, and the parameters were weighted according to 
slippage (landslide) rate in the factors’ different classes, and 
the weight of each factor was assessed after making paired 
comparisons between classes (show the matrix of AHP). The 
nine layers were integrated together in a GIS environment, 
and the map of homogenous units was produced.

After that, the map of homogenous units was cropped 
with the landslide distribution map and nine factors and 
the logarithm of the sliding factor (it took place in order to 
standardize the logarithmic conversion) were, respectively, 
chosen as independent variables and dependent variable. The 
most effective factors were determined as elevation, slope, 
lithology, distance from the fault, distance from the road, 

Ultimately, the receiver operating characteristics (ROC) 
curve (Mohammady et al., 2012; Pourghasemi et al., 2012; 
Naghibi et al., 2015; Karimi Sangchini et al., 2016) was used to 
determine the accuracy of landslide susceptibility. The ROC 
curve is a diagram in which the pixel’s ratio that correctly-
predicted the occurrence or nonoccurrence of landslides 
(True Positive) is plotted against the corresponding amount 
that is the pixel’s ratio that is wrongly predicted.

The landslide hazard intensity mapping was conducted 
in an ArcGIS 9.3 environment using the abovementioned 
equation, and the pixels were classified into six classes based 
on the turning points of the cumulative frequency curve.

Y=(- 1.838 +(0.00059)*Aspect +(0.0692)*Slope
+(0.00178)*Elevation +(0.00318)*Geology -(0.000077)*Fault
+(0.00167)*Land Use -(0.000163)*Stream -(0.000415)*Road)

land use and annual precipitation using the SPSS software 
and the stepwise method (Karimi Sangchini et al., 2011). 
The equation coefficient of determination equals to 67.96 % 
which is significant at a 95% confidence level.

....(1)

.(3)

....(2)

3. Results and Discussion
3.1. Performance of the Models

3.2. Landslide Hazard Maps

As can be inferred from the results, two models showed 
a high and a relatively close performance. However, the 
logistic multivariate regression (AUC= 0.865) was proven to 
be superior to the stepwise multivariate regression (AUC= 
0.792) (Figure 3). AUC is the Area under the ROC Curve.

The main advantage of the logistic regression over the 
simple multiple regressions is that the former allows using 
binary dependent variable types in landslide susceptibility 
mapping. Although the logistic regression is a widely-
used quantitative susceptibility mapping method, its major 
limitation is yielding average parameters for the study area 
(Erner et al., 2010), which may differ locally across different 
parts of the study area.

 Landslide hazard maps which were generated by the 
logistic multivariate regression and stepwise multivariate 
regression models are illustrated in Figures 4 and 5. The 
mentioned hazard maps were classified into very low, low, 
moderate, high, and very high classes based on natural break 
scheme. The moderate land slide hazard map class derived 
from the logistic regression model accounts for 40.57 % of 

Figure 3. ROC curves A: Logistic regression model, B: stepwise 
regression model.
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the total area; 4.97, 8.61, 8.88, and 37.04% of the total area 
are related to very low, low, high and very high HPM zones, 
respectively (Table 2). As for the stepwise multivariate 
regression model, very low, low, moderate, high, and very 
high land slide susceptibility map classes account for 19.34, 
33.58, 15.29, 16.38, and 12.41% of the total area, respectively 
(Table 2). The different results are due to the fact that the 
two models use different algorithms. The step-by-step 
multivariate regression model uses a quantitative dependent 
variable, while the logistics model uses a qualitative 
dependent variable.

Figure 4. Landslide susceptibility maps based on: Logistic regression 
model.

Figure 5. Landslide susceptibility maps based on: the stepwise 
regression model.

Logistic regression model Stepwise regression model

Hazard class Area (ha) % Area Hazard class Area (ha) % Area
Very low 1371.77 4.97 Very low 5340.13 19.34
Low 2377.39 8.61 Low 9271.99 33.58
Medium 11200.63 40.57 Medium 5049.92 15.29
High 2451.98 8.88 High 4521.22 16.38
Very high 10225.19 37.04 Very high 3426.38 12.41
Total 27627.19 100 Total 27627.19 100

Table 2. The distribution of area in different landslide susceptibility 
classes.

3.3 Importance of Landslide Effective Factors
Given the results, the determinant factors such as slope 

aspect, precipitation, elevation, geology, and land use affect 
the multivariate logistic regression model function positively 
(Eq. 2). The highest positive β coefficient is attributed to the 
precipitation which is 0.00344. On the other hand, distance 
from faults, distance from stream and distance from roads 
negatively influence landslide occurrence with β coefficients 
of -0.000077, -0.000163, and -0.000415, respectively which 
are consistent with the results of Devkota et al. (2013). Also, 
distance from roads had the highest negative influence on 
logistic regression. ‘Variance inflation factor’ (VIF) and 
the ‘Tolerance’ (TOL) are two important indices for multi-
collinearity diagnosis (O’Brien, 2007). The tolerance and 
variance inflation factors were computed for this study, and 
variables with VIF > 5 and TOL < 0.1 should be excluded 
from the LR analysis, but there was not any multi-collinearity 
problem in the landslide effective factors used in this study. 

4. Conclusions

Conditions in the Doab Samsami watershed including 
geology, roughness, geomorphology and tectonic conditions 
as well as anthropogenic pressure factors such as land use 
and rural roads’ changes have paved the way for landslide 
occurrence to the point that this phenomenon has occurred in 
thirty-seven cases with an approximate extent of 635 hectares 
in the watershed basin. Therefore, in the current study, the 
stepwise regression and logistic regression models have been 
used for the sake of mapping landslide hazards in the Doab 
Samsami Watershed, Chaharmahal Va Bakhtiari Province, 
Iran. A landslide inventory map and nine landslide effective 
factors were prepared for this investigation. After that, 
landslide susceptibility maps were generated using the two 
aforementioned modelsGiven the superiority of the logistic 
multivariate regression in landslide hazard mapping in the 
study area, taking very high susceptible class of landslide 
hazards produced by this model, which covered 46% of the 
study area, into account, is of great importance. Determining 
importance of different landslide effective factors is a 
necessary step in landslide susceptibility mapping. In 
several studies logistic regression model has been used in 
order to determine the importance of effective factors on 
landslide occurrence (Yesilnacar and Topal, 2005; Ayalew 
and Yamagishi, 2005; Nandi and Shakoor, 2009; Karimi 
Sangchini et al., 2016). According to the results, the effective 
factors such as slope aspect, precipitation, elevation, geology, 
and land use affect the multivariate logistic regression model 
function positively. The main advantage of logistic regression 
over simple multiple regressions is that LR allows the use of 
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binary dependent variable types in landslide susceptibility 
mapping. Although logistic regression is a commonly 
applied quantitative susceptibility mapping method, it has a 
major limitation of yielding average parameters for the study 
area (Erner et al., 2010), which may differ locally in different 
parts of the study area. This implies a high susceptibility to 
landslide in the watershed basin which is to be considered in 
the susceptibility management, landslide losses, and land use 
planning. Finally, the methodology developed in the present 
study can be generalized in other areas with similar climatic, 
geological, and topographical conditions in order to facilitate 
land use planning and hazard management.
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