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Abstract

1. Introduction

Geothermal energy is a source of clean energy that can 
provide reliable base-load power generation, or it can be used 
as a pathfinder for mineral resources in depth in countries 
and regions where this resource is available (Barbier, 
2002; Lund et al., 2003). The potential for the generation of 
geothermal energy is found in active seismic areas or with 
volcanic activity worldwide (Grunsky et al., 2009; Mwangi, 
2013). Even some of the geothermal resources are ubiquitous 
in populated areas and easily accessible; many others are 
found in the depths of the ocean, in mountainous regions, 
and under glaciers or cubicles (Bloomfield, 2003; Grunsky et 
al., 2009; Rybach, 2010).

In the crust, the temperature gradient is typically 30 °C 
per kilometer, but it can be as high as 150 °C per kilometer in 
a hot geothermal area. The geothermal resources have been 
developed in several steps, starting with the exploration of 
the surface, followed by exploratory drilling to discover 
and confirm the resource availability (Rowley, 1982). In 
some countries with many hot springs and surface thermal 
evidence, it might be a sign of geothermal resources 
(Openshaw, 1983; Zhu et al., 1989; Ghadimi et al. 2012; 
Seyedrahimi-Niaraq et al., 2019). 

The presence of hot springs, geysers, and fumaroles 
along with hydrothermal alterations are superficial signs 

of geothermal activity that may indicate the existence of 
economical geothermal resources in a region (Lund et al., 
2003; Grunsky et al., 2009). According to conducted studies 
in Iran, many geothermal promising regions in NW of Iran 
indicate the existence of economic geothermal resources. 
Using this surface evidence, geological information and 
geochemical analysis and interpretation can achieve a 
conceptual model of geothermal resources (Yousefi et al., 
2010; Najafi and Ghobadian, 2011; Ma et al., 2016). 

Geochemical prospecting plays an important role in 
the exploration of geothermal resources. In recent years, 
several researchers used machine learning in geochemical 
explorations (He, et al., 2022). Pan et al., (2023) carried 
out geological mapping via a convolutional neural network 
based on remote sensing and geochemical survey. Zhang et 
al., (2021) used integration of machine learning algorithms to 
estimate resources in gold deposits. They also used machine 
learning-based prediction of trace element concentrations 
in prospectivity mapping (Zhang et al., 2021a; Zhang et 
al., 2021b).Geochemical stream sediments can reflect 
various geochemical characteristics related to the probable 
subsurface ore bodies better than samples such as soil and 
groundwater (Anderson, 2006; Ranasinghe et al., 2009; 
Chandrajit et al., 2001; Gransky et al., 2009; Zuo et al., 2009). 
In geochemical prospecting, it is not always possible to solve 
a problem by studying only one element, and it is common 
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The aim of this paper is to identify the promising geochemical anomalies in the geothermal area of Mianeh in northwestern 
Iran. This was carried out using 840 stream sediment samples, which were analyzed by ICP‐MS for 42 elements for Multivariate 
Geochemical Analysis (MGA). Due to the high migration and mobility power of the Arsenic element, it was selected as the 
main geothermal pathfinder. Thus (As) element was determined as a labeled variable, and the other important elements and 
their relationships with (As) can be identified through MGA. Some of these related elements can then be proposed for future 
exploration. Firstly, for the implementation of MGA, a Probability Plot Modeling (PPM) on the (As) concentration values 
was carried out to separate background and anomaly subpopulations and extract threshold values for each subpopulation. 
Secondly, based on the PPM results for the (As) variable, the Discriminant Function Method (DFM), using their functions of 
code 0, 1, and 2, was implemented to distinguish different variables belonging to each of those subpopulations (background, 
mixture, and anomaly).  Also, Principal Component Analysis (PCA) and Clustering Analysis (CA) were carried out which 
lead to almost similar results to the DFM. Finally, the elements of Au, Mo, W, Cu, Be, K, and Rb were recognized as the most 
important elements related to the (As) element. Finally, ArcGIS mapping shows a geothermal region from the NW to NE of 
the study area for plans and detailed exploration.  
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identified as the starting geothermal pathfinder to carry out 
the Multivariate Geochemical Analysis (MGA).

2. Geological setting

for a set of variables to interact and associate. In this case, 
it is necessary to study several elements or even the study 
of contents associated with other variables representative 
of geological or environmental phenomena (Spadoni et al., 
2005; Ranasinghe et al., 2009; Moradpouri et al., 2023). 
On the other hand, the main problem in the analysis and 
interpretation of geochemical data (especially stream 
sediments) is the variety and large size of the data matrix. 
This problem can be solved using multivariate data analysis 
that can convert large volumes of the data into simple and 
visual geochemical information (Peh and Halamić 2010; 
Gransky et al., 2009; Zuo, 2011; Li et al., 2012; Moradpouri 
and Ghavami-Riabi, 2020; Tobore, et al., 2023). 

In this way, multivariate methods have been an important 
tool for many years for analyzing a large amount of data so that 
one can work with many variables simultaneously since it is 
the set of variables that models a geochemical landscape, not 
just one in isolation (Anderson, 2006; Chandrajit et al., 2001; 
Gransky et al., 2009; Al-Momani, et al., 2020; Moradpouri 
and Hayati, 2021). As the various variables interact to 
form the final observed picture, some of these interactions 
and associations sometimes appear clearly in multivariate 
studies. It is important to mention that the obtained results in 
the applications of multivariate variables must be compared 
with the geological information available in the study area 
for interpretation (Davis, 2002; Dillon and Goldstein, 1984; 
Moradpouri et al., 2017). For each result of a multivariate 
application, an association with a geological, metallogenetic, 
or geochemical process in the area should be sought. Thus, 
when representing such a result on a map, the behavior of a 
process that operated in the region can be seen, which can 
be of great value in understanding its evolution, especially 
in the case of representing mineralization, hydrothermal 
alteration, or others (Halfpenny and Mazzucchelli, 1999; 
Helvoort et al., 2005; Peh and Halamić, 2010; Grunsky et al., 
2014, Moradpouri and Ghavami-Riabi, 2020; Moradpouri 
and Hayati, 2021). 

Several researchers used the elements Hg and (As) as 
indicators for exploring geothermal resources (Matlick and 
Buseck, 1975; Openshaw, 1983; Shiikawa, 1983; Qian, 2009; 
Jimoh et al., 2023). The other elements of Sb, Bi, B, and some 
anions and cations are the key elements in the exploration 
of geothermal resources (Bingqiu et al., 1988; Zuo et al., 
2009; Qian, 2009). Risdianto et al. (2010) presented that 
the intersections of faults might create permeability in 
depth and influence the flow of geothermal fluids from 
reservoirs. Mwangi (2013) used conservative constituents 
for tracing the origin and flow of geothermal fluids, stable 
isotopes along with B and Cl as the most important elements. 
He also used rock-forming constituents of SiO2, Na, K, 
Ca, Mg, CO2, and H2 to predict subsurface temperatures 
and potential production problems such as deposition and 
corrosion (Mwangi, 2013).This paper aims to analyze the 
stream sediment data of the Mianeh geothermal region in 
NW of Iran for geothermal pathfinders and new insight into 
probable subsurface mineralization. The data included 840 
stream sediment samples, which were analyzed by ICP-MS 
methods for 42 geochemical elements. According to the hot 
spring in the region and field study, the element of (As) was 

The Iranian crust is divided into several main and sub-
zones based on magmatic, metamorphic, sedimentary, and 
tectonic occurrences. Mianeh region is located in the NW 
of Iran (Figure 1). This region has undergone many changes, 
so that the effects can be monitored from the Precambrian 
(Mianeh metamorphic unit) to the recent (Sabalan and 
Sahand volcanism). When looking at the geological map 
of the Mianeh in Figure 1, it is observed that Tertiary 
sediments, volcanic rocks, and intrusive masses cover 
most of it. Most outcrops of the Mianeh region are almost 
composed of volcanic and sedimentary rocks associated 
with the Cenozoic by which Eocene and Oligocene volcanic 
rocks cover the largest area in the region. These rocks often 
have a combination of rhyolite, ignimbrite, rhyodacite, and 
trachyte, and the results of the chemical analysis indicate 
the alkaline nature of this volcanism (Aghanabati, 2004). 
During the Eocene, the Mianeh region witnessed a lot of 
volcanic activity, which is often in the form of lava flows 
with andesitic, basaltic, and andesitic trachea with various 
combinations of tuff layers. The lowest part of the Eocene 
volcanic rocks is in the form of pyroclastic deposits, gray 
acidic tuffs, and acidic lavas followed by andesitic lavas and 
sandy tuffs (Aghanabati, 2004). A large volume of Eocene 
volcanic rocks in the form of mega-porphyry andesite is 
found in the Bozgoosh mountain range. The transition 
from Eocene to Oligocene volcanism is in the form of 
ignimbrite, rhyolite, trachyte, and shear tuff rocks that are 
located on Eocene-related units. Miocene lithology in the 
regions includes conglomerate, siltstone, sandstone, basalt, 
andesite, tuff, marl, hornblende, siltstone marls, sandstone 
conglomerates, shales, and pyroclastic rocks. Miocene 
deposits are exposed in the southern areas around Mianeh. 
In addition, Quaternary deposits include old terraces, new 
terraces, paved limestones, and salt plains that are exposed 
in the areas around Mianeh (Aghanabati, 2004). The location 
of the city’s border, samples location, Maman hot spring, 
streams, and river location can also be seen in Figure 1.
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In the early period of geochemical exploration, arsenic 
(As) and antimony (Sb) were commonly used as so-called 
pathfinder elements for Au (Boyle, 1979). The name is given 
because of the common association of gold mineral isation 
with rocks enriched in arsenopyrite (FeAsS) and/or stibnite 
(Sb2S3), and because As and Sb were easier to determine 
analytically due to their higher abundances (Steenfelt, 1996).

Several researchers suggested the use of the identified 
elements expressly using the strongly correlated elements 
such as As and Zn to detect hidden anomalies in the complex 
environment (Dzigbodi-Adjimah, 1993; Kesse, 1985; Arhin 
et al., 2015). 

Yaisamut et al., (2023), presented the interpretation of 
intricate spatial dispersion patterns and concentration levels 
of deposit pathfinder elements, specifically arsenic (As), 
copper (Cu), and zinc (Zn), using a comprehensive array of 
stream sediment geochemistry data.

1.1. Arsenic (As) as Pathfinder



Rivers, streams, and hot springs: The main rivers in 
the study area are shown in Figure 2a.  Qezel Owzan is one 
of the longest rivers in Iran. On its track, Zanjanrood and 
Abharrood Rivers join it, and before the city of Mianeh, the 
Qaranqo, Shahrchai, and Aidoqmosh Rivers, which flow 
from west to east join it, and it finally flows into the Caspian 
Sea (Figure 2a). In addition to the mentioned rivers and due 
to the topography, the study area includes many streams that 
are shown in Figure 2b. 

The other important phenomena in Eastern Azarbaijan 
province are hot springs. Some of which are located around 
Mianeh city. The hot springs of Maman, Sabz, Ivorq, and 
Gudarq are among the most prominent ones. Sulfur, arsenic, 
salt, copper, and iron ions are among the most important 
combinations in these hot waters. Maman hot springs, at a 
distance of 100 meters from each other, are located in the 
region of   Maman village in the central part of Miyaneh 
city and the northeast of the study area (Figure 2b). These 
springs also have therapeutic characteristics of the sulfur 
type. The water of Maman hot spring is naturally yellow 
which indicates the presence of sulfur, which can also be 
seen in the color of the rocks inside and around the hot 
springs. In addition, many other hot and cold springs in the 

surrounding regions can be used in geochemical studies to 
find trace elements. Furthermore, Figure 2b shows a satellite 
image of the study area including the location map of the 
stream sediment samples, Maman hot spring, river, and 
stream sediments which help to interpret the results of the 
geochemical multivariate analysis.

Figure 1. Geological setting and location map of the study area, stream sediment samples, hot springs, rivers, and streams 

 Figure 2. Location map: (a) rivers (b) streams and stream sediment 
samples
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3. Material and Methods

With the above variety of information (topography, 
geology, rivers, hot springs), the geochemical analysis and 
interpretation of stream sediments for probable subsurface 
mineralization could be a multifaceted work, but the results 
considerably help us determine the promising areas for future 
plans and detailed exploration. Therefore, the geochemical 
sampling of 840 stream sediment samples employed the use 
of a mattock or shovel to reach appropriate samples from 
the available river and streams in the study area. Due to the 
location and nature of the streams, sampling spacing was 
different. All  samples  were  analyzed  for  major and trace 
elements cocentrations  by  inductively coupled plasma mass 
spectrometry (ICP‐MS) for 42 elments, following a 95°C 
Aqua Regia digestion.  Analytical uncertainties vary from 
0.03% to 0.1% for major elements and from 0.1% to 0.55% 
for trace elements.

A large number of techniques are available that address 
problems in space with multidimensional approaches to 
one, two, or more than two populations. Multivariate data 
are almost all based on the matrix of element concentration. 
Among the most used methods in geochemistry, principal 

An important issue in the interpretation of various 
geochemical data with the prospecting perspective is the 
determination of threshold values that separate the ranges of 
values defined as representing background and anomalous 
values. Thus, the probability plot modeling on (As) element 
as the most important element related to geothermal activities 
was carried out to de-convolute the subpopulations, which 
separate the background from the anomalous values. The 

results of (As) probability diagram modeling are shown in 
Figure 4.  The horizontal axis is the cumulative percent and 
the vertical axis is the logarithm of concentration values for 
specific groups of data as open circles (Figure 4a). It should 
be added that the least-squares method was used to fit the 
best model to the data. The continuous curve that passes 
through the groups of data (open circles) is the fitting model 
that presents the recombination of the sub-populations 
represented by the sloping straight lines. It is obvious that 

component analysis, clustering analysis, factor analysis, and 
discriminant analysis can be mentioned.

First, the univariate statistical analysis of the dataset, 
including maximum, minimum, mean, and standard 
deviation was carried out for a primary consideration of 
abnormal variations so that some of the variables show 
meaningful values (Table 1).  Among those elements and 
based on the reasons that were mentioned, the arsenic (As) 
element was identified as the geothermal pathfinder in 
the study area to carry out the Multivariate Geochemical 
Analysis (MGA) that clarifies which of these elements have 
more relationships with the As as a pathfinder and which 
could be a sign of subsurface mineralization. The mean value 
of (As) in the study area is 20.07 (ppm), and its maximum 
value is 174.1 (ppm) which may be a meaningful sign of 
subsurface geothermal activities. In addition, the analysis of 
histograms, Q-Q and P-P plots, was carried out for the (As) 
data which indicates a reasonable continuity and lognormal 
nature in the dataset (Figure 3). Therefore, it was considered 
for existing sub-populations, thresholds, and background 
and anomaly separation using PPM.

3.1. Multivariate Geochemical Analysis (MGA)

Probability Plot Modeling (PPM):

Basic statistics:

Table 1. Basic statistics of the stream sediments dataset in the study area (N = 840)

Variable Min. Max. Mean Std. deviation Variable Min. Max. Mean Std. deviation

As 1.460 174.1 20.069 12.942 Mo 0.010 15.61 1.490 1.338

Au 1.000 88 2.338 4.18 Na 1376 73830 13422.8 6550.1

Ag 0.000 2 0.367 0.164 Nb 4.87 69.67 16.435 5.709

Al 23210 103300 64196.7 13703.5 Ni 2.68 74.27 28.366 11.3

Ba 129.6 2516 675.068 208.582 P 20.14 4321 993.05 758.576

Be 0.64 5.82 1.700 0.594 Pb 9.61 172.3 32.307 13.915

Bi 0.01 12.87 1.501 1.255 Rb 12.49 266.9 69.074 30.482

Ca 11240 283200 78684.4 27033.9 S 10 246100 12055.0 27337.8

Cd 0.1 6.48 0.341 0.268 Sb 0.14 342 2.451 11.79

Ce 10.94 111 51.739 12.436 Sc 4.23 25.450 11.781 3.25

Co 4.53 57.83 15.712 5.636 Sn 1.8 7.6 3.204 0.676

Cr 3.61 227.4 63.184 26.408 Sr 117.8 6124 629.82 584.64

Cs 1.0 27.55 5.889 2.535 Te 0.08 1.0 0.156 0.086

Cu 9.090 203.5 34.70 20.98 Th 3.84 83 14.892 5.887

Fe 17480 335750 53608.2 20787.5 Ti 1363 35455 5409.1 2383.8

Hg 0.05 0.6 0.089 0.026 Tl 0.4 2.35 0.918 0.235

K 3434 50800 19424.5 6558.1 U 0.94 17.23 4.437 1.554

La 7.51 75 27.344 7.637 V 41.96 1147 152.98 84.706

Li 11.33 185.8 28.842 12.291 W 0.27 54.3 1.754 2.227

Mg 96.41 32810 9951.3 4237.1 Zn 24.64 334.1 75.95 29.441

Mn 246.7 4431 903.246 283.6 Zr 75.7 911.2 315.02 121.75
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 Figure 3. (a) Histogram of the raw (As) data, (b) P-P plot, (c) Q-Q 
plot. 

 Figure 4. The results of the probability plot modeling. (a) Probability 
plot of the logarithmic (As) values; (b) First three subpopulation 
estimates. (c) Results for the revision of the first estimate by three 
optimization steps to minimize the deviation between data (circles) 

and model (the fitted curve).

three sub-populations can be recognized in the data (Figure 
4b). The final step is the improvement of the previous fitting 
model, which is shown in Figure 4c with the final threshold 
values. The result of the probability plot modeling, including 
the details for each subpopulation and the threshold values, 
is presented in Table 2.

According to the results of probability diagram modeling 
(in Figure 4 and Table 2), samples with (As) concentration less 
than 9.21 ppm were identified as background subpopulation, 
The concentrations values between 9.21 to 42.78 ppm were 
identified as mixtures of background and anomaly. Finally, 
samples with concentrations above 42.78 ppm were defined 
as the anomaly subpopulation. Therefore, the location 
map of (As) distribution for these three subpopulations is 
shown in Figure 5. As can be seen, most of the representing 
anomalous samples are located in the north part of the study 
area especially along with Qaranqo River and in Maman 
hot spring. This was somehow expected and showed a 
promising sign, but it needs to be interpreted considering the 

Variable=As Unit=ppm N=840 Population Thresholds

Population Mean Percentage 1 2.94-9.21

1 5.20 5.0 2 7.42-42.78

2 17.81 93.0 3 37.37-134.9

3 70.99 2.0
Transform=Logarithmic Populations=3 

Missing observation=0

Table 2. Mean, percentage, and threshold values after deconvolution 
for the three recognized (As) subpopulations
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 Figure 5. Arsenic (As) content distribution based on the probability 
plot modeling threshold values

whole geological and geochemical evidence after the proper 
analysis in the later sections. Thus, first a multivariate 
discriminant analysis was carried out to determine the most 
related elements to the (As) content using the PPM threshold 
results of Table 2. In addition, the multivariate geochemical 
analysis of PCA and clustering analysis were carried out for 
comparison.

follows.
                                                    (1)

where is the coefficients matrix,  and  are 
estimated mean vectors of two populations, is the reversed 
covariance matrix of two populations.

Now, the discriminant function is calculated using the 
following equation.

                                                   (2)

where  is the vector of the newly observed sample, 
there is a function that defines the separation boundary 
of two populations called the critical function as in the 
following equation.

                                                 (3)

This function is a vector, which starts from the end 
of  and finally reaches to the separation boundary of 
two populations. If then  the sample is assigned to 
population 1 and if then  samples are assigned to 
population 2.

Arsenic mentioned above, (As) element was chosen as the 
dependent variable versus the other independent variables 
(elements). Thus, the linear discriminant functions of Code 
0, Code 1, and Code 2, were defined based on the probability 
plot modeling of the (As) variable in Table 2. The analysis 
was implemented using the dataset of 42 variables related 
to the 840 stream sediment samples. Based on the threshold 
values, the (As) values of the background population with a 
concentration of less than 9.21 ppm were defined as Code 0, 
the values between 9.21 and 42.78 ppm were defined as Code 
1 (a mixture of the background and anomaly), and finally, the 
values above 42.78 ppm were defined as Code 2 (anomaly). 
This forms the basis of the linear function that was used for 
the DFM, which evaluates the relationship between variables 
through the three defined codes and the two discriminant 
functions.

Based on the DFM, two functions can be defined 
which are shown in Table 3 with its parameters. Function 
1 describes 90.3% of the variability with a correlation of 
84% with the data. In addition, function 2 describes 9.7% 
of the variability with a 45% correlation. Contrary to 
the correlation coefficient, the lower the Wilks’ Lambda 
coefficient, the better the discriminant function. The larger 
the Chi-square coefficient, the better the function could 
justify the variability. 

Discriminant Function Method (DFM): DFM is one 
multivariate statistical data analysis that is used for the 
evaluation of the dependence of one sample on one of two 
(or more) known populations. The discriminant function 
is defined based on known features of those populations. 
In order to define the discriminant function, a linear 
combination of all variables is used to create a normally 
distributed univariate variable. This function is calculated in 
the direction of the highest discrimination of the populations 
(Peh and Halamić, 2010).

The coefficients of this linear combination is defined as 

In the next step, the samples were classified according 
to two discriminant functions. In Figure 6, each classified 
sample was coded and a different color was assigned for 
visualization purposes. This figure shows that considerable 
discrimination has occurred between the data related to sub-

populations. Then, the variables were discriminated based 
on the two defined functions between the three disputed 
sub-populations that are shown in Figure 7, which shows 
one reality that describes separation boundary based on (As) 
variable coded values and their functions. In addition, the 

Table 3. Calculated discriminant functions and validation parameters

Function Eigenvalue Variance 
percentage

Cumulative 
percentage Correlation Wilks’ 

Lambda Chi-square df Sig.

1 2.349 90.3 90.3 0.84 0.239 1169.663 84 0.000

2 0.251 9.7 100.0 0.45 0.799 182.887 41 0.000
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other variables’ locations in Figure 7, are outputs of the DFM. 
As can be seen in Figure 7, As, Au, Mo, W, Th, K, Rb, Be, 
Ce, Fe, and Nb were located in the anomalous part as tracing 
elements for (As) element and probable mineralization 
(Code 2). Cs, Co, Ce, Hg, P, Ni, Li, and Zr were located in 
the mixture part (Code 1), and the rest were located in the 
background part (Code 0).

To evaluate the results of DFM, based on p-p modeling 
and according to the discriminate functions, 93.2%, 86.6%, 
and 81% of the samples were correctly classified as code 0, 
Code 1, and Code 2 respectively when three different groups 
memberships were used (Table 4). In addition, as can be seen 
in Table 3, this method could validate that 92% of code 0, 
83.5% of code 1, and 71.4% of code 2 were classified properly.

PCA is a way of identifying patterns in data and 
expressing them in a way that highlights their similarities 
and differences, with the advantage that once these patterns 
are identified, we can reduce the number of dimensions 
without much loss of information. We choose components 
and form a vector feature, and the eigenvector with the 
highest corresponding eigenvalue is the principal component 
of the dataset. Minor components can be ignored, with some 
loss of information, but if the eigenvalues are small, the loss 
is not very significant. 

In Geology, PCA can represent active geological 
processes, present lithological changes or events causing 
mineralization. The dimensionality of the problem is also 
reduced. In addition, it allows the identification of the 
variables that have very high or low contributions to the 
variability of the study area. An identification that allows 
suggesting the elimination of these variables in future 
stages of study. In addition, a very common objective in 
geochemical programs is the classification of observations 
that make up a given sample (rocks, stream sediments, soils, 
or water). This classification is often based on the measured 
concentration. It is very useful in cases where large amounts 
of observations are available and in cases where there is 
little prior knowledge of the meaning of the genesis of the 
constituents. 

In the current research, PCA was processed with the 
raw data of 840 stream sediment samples for 42 variables 
to explore the elemental associations. There are several 
techniques for decision-making on the retention of main 
components, the most accepted and recommended being the 
one that proposes the retention of main components whose 
total variability percentages are considered significant, 
that is, they explain an important proportion of the total 
variations present. In the original data set. It is evident 
that, at this point, the participation of the technician who 
applies PCA is decisive; the non-use of components from a 
certain level (from the fourth main component, or the fifth, 
for example) does not, however, cause any problems on 
the ones used, nor does it affect their interpretation under 
any circumstances. It can only leave processes represented 
by the unused components, which have no influence, as 
stated above, on the interpreted components (and their 
associated processes). Table 5 presents the variability of 
each component and its respective eigenvalue for the first 
component among the whole component. Actually, the first 
two components explain 45.63% of the variability of the data, 
while the first seven components explain 66.9%. As can be 
seen, in Figure 8, after the fifth component, one can see a 
mild trend in variability, which means that we can ignore 
the components with the low contribution in introducing the 
variability in the data.

 Figure 6. Classified samples based on discriminant function 1 and 2

 Figure 7. Standardized canonical discriminant function coefficient 
based on the three discriminant functions.

Code
Predicted Group 

Membership Total
0 1 2

Original

Count

0 314 23 0 337

1 61 399 1 461

2 0 8 34 42

%

0 93.2 6.8 .0 100.0

1 13.2 86.6 .2 100.0

2 .0 19.0 81.0 100.0

Cross-
validated

Count

0 310 27 0 337

1 71 385 5 461

2 0 12 30 42

%

0 92.0 8.0 .0 100.0

1 15.4 83.5 1.1 100.0

2 .0 28.6 71.4 100.0

Table 4. Classification and validation of the DFM results.

Principal Component Analysis (PCA):
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Figure 9a-c shows the correlation between the first 
three components with the coordinates of the variables. 
The coordinates are based on correlations and are plotted 
according to components F1, F2, and F3. As can be seen in 
Figure 9a, the first group from the loadings of F1 consists of 
Na, Ni, Tl, Mn, Ba, Nb, Li, Th, Zn, Sn, Cr, Co, Fe, Cs, Ti, 
V, Hg, Bi, and Tl, and the second group from the loadings 
of F2 consists of K, Be, Rb, Au, As, Mo, Sb, P, Cu, W, Ag, 
Zr, Al, Ce, La, Cd, Pb, and Sc. In addition, in each group, 
one can interpret the relationship and correlation between 
elements. For example, the most related elements to (As) 
as the main pathfinder element in Mianeh geothermal area 
in F1/F2 map are Au, Sb, Mo, Cu, W, K, Rb, Be, Zr, and 
P. It is both because of the low angle between their straight 
lines and rather due to their close distance of (As), Au, Mo, 
and Sb from the center, we need to obsessively interpret this 
association and we should look at the relationship between 
these variables on the other pair of components map.  On 
the other hand, the correlation between the ratio of elements 
shows that for example for the elements (As), Au, and Cu, 
there is no correlation between the As/Au ratio with As/Cu, 
but the short length of the line that connects both Au and Cu 
to (As) shows the lower variance between each pair of these 
elements. As an example of a high correlation between two 
pairs of ratios, the high correlation for the ratio of As/Au to 
As/Sb can be mentioned. Figure 10a-c shows the coordinates 
of the samples according to components F1, F2, and F3. 
Figures 9 and 10 determine the importance degree of each 
factor based on the location of the different variables and 
samples’ location. 

 Figure 8. Contribution of variables to the main components

Table 5. Main components and their respective eigenvalue and variability

F1 F2 F3 F4 F5 F6 F7

Eigenvalue 13.502 5.664 2.734 1.916 1.544 1.417 1.321

Variability (%) 32.147 13.486 6.510 4.562 3.676 3.374 3.146

Cumulative % 32.147 45.633 52.143 56.705 60.381 63.756 66.901

 Figure 9. Coordinates of the variables when the axes represent 
the variable loading values in F1 (principal component 1), and F2 
(principal component 2) and F3 (principal component 3). (a) in the 
F1 and F2 domain, (b) in the F1 and F3 domain, (c) in the F2 and 

F3 domain.
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 Figure 10. Sample coordinates in PCA. (a) F1 and F2, (b) F1 and 
F3, (c) F2 and F3.

Clustering Analysis (CA): The application of the CA 
is very useful as an exploratory tool for data, that is, it 
can indicate associations /groups that are not previously 
suspected, and it can often simply reflect some obvious 
lithological associations.  It aims to classify objects (in the 
case of geochemistry, field samples, or analyzed variables) 
for similarities and/or dissimilarities, and the groups 
generated must have high internal homogeneity and high 
external heterogeneity. Cluster analysis is applied to objects 
(Q technique), whose variables can be also examined for 
similarities and groupings (R technique). The different 
methods for cluster analysis can be framed into four general 
types: partition methods, methods with arbitrary origin, 
methods by mutual similarity, and methods by hierarchical 
groupings. 

The method used in this work was hierarchical groupings 
(the most used in geochemistry) in R mode. The grouping 
was processed using the method of Ward ś agglomeration 
(minimum variance), grouped by correlation coefficient. 
The same raw data used for DFM and PCA was also 
applied for the CA. In order to evaluate similarities between 
elements, cluster dendrograms, showing hierarchical 
variable clustering, are presented in Figure 11. It shows 
the lines linked according to levels of similarity that group 
pairs of the variables. The higher the correlation, the shorter 
the connection distance between variables. From right to 
left, the first cluster of orange color is largely made up of 
elements associated with the (As) element as the geothermal 
pathfinder. This cluster includes the elements Au, As, Mo, 
W, Be, K, Rb, Zr, Ce, La, Ag, Al, Sc, Cu, and P, so that some 
of them have a closer connection distance, and some are far 
away. However, the results are rather similar to the DFM and 
PCA results, and one can classify a pack of those elements 
as the geothermal pathfinders of the occurred mineralization 
based on the geological setting.

GIS mapping: As discussed in the previous sections, the 
results obtained from DFM, PCA, and CA indicated that a 
number of elements were identified as related to the arsenic 
geothermal pathfinder (e.g. Au, Mo, W, Sb, K, Rb, P, Cs, 
Be, La, Cu, Zr, Ag, and Al). Among these associations, the 
elements (variables) of Au, Mo, W, Cu, Be, K, and Rb were 
recognized as the most important related elements to (As) 
based on the multivariate geochemical analysis (MGA). 
Some of them can be interpreted as elements related to 
mineralization (e.g. Au, Mo, Cu). As, Au, Mo, and Cu 
reinforce the probability of porphyry deposit. It should be 

 Figure 11. The dendrogram in R mode shows the hierarchical 
variable clustering by correlation.
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added that (As) has a direct relationship with gold deposits. 
Among the important geothermal pathfinders such as Sb, 
Hg, and Bi, only the Sb element showed the relationships 
with (As) element only in PCA which cannot be seen in 
DFM or CA. Sb is an element of the nitrogen family (N, 
As, Sb, P, Bi) and has rather similar chemical properties to 
Arsenic (As). On the other hand, the elements of K, Rb, and 
Be are present in alkali feldspar minerals of the volcanic 
rocks. Distribution maps of the above-related elements were 
prepared in ArcGIS10.5 software using the kriging method 
and are shown in Figure 12. In this Figure, the anomalous 
area of the arsenic geothermal pathfinder and the main 
related elements of mineralization can be seen. These areas 
are proposed as promising regions for the later exploration 
steps.
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 Figure 12. Anomalous area of the geothermal pathfinders and the 
probable variables of mineralization. (a) As, (b) Au, (c) Mo, (d) Cu, 

(e) W, (f) K, (g) Rb, (h) Be

The results of the present study can be divided into 
several parts. (a) Due to the selection of arsenic element (As) 
as a suitable geothermal pathfinder in the study area, the 
MGA proved that none of the other geothermal pathfinders 
such as Sb, Hg, and Bi showed a significant relationship 
with (As) pathfinder. Thus, arsenic plays a key role in the 
prospecting of geothermal resources in the study area 
using stream sediments. (b) What can be deduced from 
the integrated map of the promising areas, geological and 
MGA indicates that there is an active geothermal region in 
the northwest of the study area that includes the rivers of 
Shahrchai, Qaranqu, and Aidoqmosh that originate from 
volcanic areas of the Sabalan and Sahand mountains and 
continue to Maman hot spring in the Northeast. These paths 
often consist of volcanic rocks. (c) Different MGA methods 
of the present stream sediment data revealed several multi-
element associations describing the existence of subsurface 
probable mineralization in the NW to NE of the study area 
for plans. Among these associations, the elements of Au, Mo, 
W, Cu, Be, K, and Rb were recognized as the most important 
related elements to the (As) variable. The elements of Au, 
Mo, and Cu can be interpreted as the elements related to 
the mineralization, which may indicate the probability of a 
porphyry deposit. The elements of K, Rb, and Be are present 
in alkali feldspar minerals of the volcanic rocks.

4. Conclusion
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