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Abstract

1. Introduction

Improving agricultural water management is critical 
for enhancing productivity in arid regions globally (Zhou et 
al., 2021; Magombeyi et al., 2018), where agriculture plays 
a pivotal role in sustainable development, food security, 
and poverty reduction. The past century, particularly the 
last two decades, has witnessed significant water body 
contamination due to diverse human activities, intensifying 
water management challenges amid the ongoing trends 
of urbanization and industrialization (Hussien et al, 2022; 
Hadef et al, 2021; Calmuc et al., 2020; Pham et al., 2017; 
Gokul et al., 2015). The escalating human population density 
and anthropogenic actions contribute to environmental 
degradation, introducing detrimental substances through 
resource mismanagement and improper waste disposal 
(Omonona and Azombe, 2024; Siddiqua et al, 2022). These 
substances jeopardize ecosystem stability and the renewal of 
natural resources such as air, water, and soil (Bani Khaled 
et al, 2024; Al Rabadi et al., 2023; Changyoon  et al., 2023), 
leading to environmental mismanagement and consequent 
water crises like water scarcity (Chiedozie and Tosan, 2022).

Globally, water scarcity is emerging as a pivotal challenge 
to human health and environmental stability (Carlo et al., 

2023; Al-Qawasmi and Al Sharif, 2022). The increasing 
demand for this vital resource has spurred innovative 
techniques to preserve its sustainability and ensure a secure 
status concerning both quantity and quality, employing 
novel recycling processes. Among these strategies, the 
reuse of non-potable water in activities with less stringent 
water quality standards stands out, reducing the demand for 
potable water and extending the service life of freshwater 
resources (Al-Mubaidin et al, 2022).

Various water treatment processes, tailored to pollution 
rates and regional disparities, facilitate the reuse of unsafe 
water. This study focuses on slow sand filtration, which is 
considered a suitable technology for purifying unsafe water, 
particularly in rural areas. It adeptly removes waterborne 
pathogens and metallic and organic components and 
diminishes turbidity (Maiyo et al., 2023). Originating in 
1804, slow sand filtration has evolved into a widely employed 
technique for drinking water production (Maiyo et al., 2023; 
Guchi, 2015; Haig et al., 2011) and enhancing wastewater 
quality for reuse (Abdiyev et al., 2023; Zhang et al., 2022; 
Agrawal et al., 2021; Hijnen et al., 2004) or environmentally 
safe discharge (Islam et al., 2021).

The present study delves into the efficiency of slow sand 
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In various regions confronting water scarcity, the agricultural reuse of wastewater presents potential challenges, prompting 
the need for economical methods to reduce metallic pollutants, such as the implementation of slow sand filtration. This 
investigation sought to understand the efficacy of metallic pollutant removal using sand as an adsorbent, employing the 
adsorption process to develop a cost-effective strategy for treating water contaminated with heavy metals from the Tensift 
River. This river directly receives wastewater from the industrial unit of Zn and Pb extraction at the Draa Lasfar mine, 
located 13 km northwest of Marrakech City, Morocco. The results indicated that slow sand filtration efficiently purifies 
water, with its effectiveness significantly influenced by the water inlet flow in filtration columns. A decrease in water inlet 
flow prolonged the residence time of solutes in the filter bed, augmenting contact time and fostering chemical bonds between 
metallic trace elements and their binding sites on the sand. Logistic component analysis, ensuring coherence between the 
model, experimental outcomes, and interpretation, facilitated the prediction of the dynamic behavior of the adsorption 
mechanism in the slow sand filtration process, articulated by a single logistic model.  
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filtration in purifying unsafe water from the Tensift River, 
which receives wastewater directly from the Draa Lasfar 
mine near Marrakech, Morocco. Physicochemical analyses 
were meticulously conducted on water samples before and 
after filtration, evaluating the filter’s proficiency in removing 
metallic trace elements (Cd, Cu, Pb, and Zn) under varying 
column inlet water flow conditions. Additionally, the study 
aspires to pioneer a new prediction method, involving a 
mathematical model of the slow sand filtration process, 
while considering the column inlet water flow parameter, to 
ensure a secure status in water reclamation.

Samples of mine wastewater and Tensift River water were 
collected directly, both upstream and 50 meters downstream 
from the point of mixing with wastewater from the Zn and Pb 
extraction industrial unit at Draa Lasfar mine. The collection 
involved using sterile plastic bottles with a capacity of 2000 
milliliters, and each bottle was rinsed three times with 
sample water before collection. For river sample collection, 
a bottle with a string attached to the neck was deployed, and 
upon retrieval, the bottle was sealed. The collected samples 
were promptly transported to the laboratory in ice within an 
insulated container to conduct the slow sand filtration study 
in laboratory columns.
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Draa Lasfar mine, situated approximately 13 kilometers 
west of Marrakech city, is a geological site characterized 
by the presence of pyrite minerals. Discovered in 1953, the 
mine’s commercial exploitation commenced in 1979, marked 
by the processing of minerals through flotation after primary 
and secondary crushing and grinding. This extraction yielded 
substantial production, with 60 million tons of products 
generated in the initial two years (1979 and 1980). Notably, 
Draa Lasfar mine became dormant in March 1981 but saw a 
resurgence in 1999 due to its rich reserves of polymetallic 
components, including arsenic (As), cadmium (Cd), copper 
(Cu), iron (Fe), lead (Pb), and zinc (Zn). The mining 
activities, while contributing valuable resources, have raised 
environmental concerns, particularly regarding the direct 
discharge of wastewater into the nearby Tensift River without 
pretreatment measures. The Draa Lasfar deposit contains 10 
Mt of ore grading 5.3 wt.% Zn, 2 wt.% Pb, 0.3 wt.% Cu, and 
their orebodies consist dominantly of pyrrhotite (70 to 95 
vol.% of sulfides, but commonly up to 90 to 95 vol.% in Zn 
and Cu-depleted zones), with lesser sphalerite (1 to 10 vol.%), 
galena (0.5 to 5 vol.%) and chalcopyrite (1 to 5 vol.%), and 
with local concentrations of deformed pyrite (2 to 3 vol.% of 
total sulfides) being arsenopyrite the most common of the 
minor minerals (Avila et al, 2012).

The experimental setup for slow sand filtration involved 
three polypropylene plastic columns, each sharing a standard 
diameter (D=10cm) (Farrag et al., 2017). These columns, 
open at both ends, facilitated the inlet of contaminated water 
at the top and effluent discharge at the bottom. The study 
focused on assessing the efficiency of slow sand filtration 
in removing metallic trace elements (Cd, Cu, Pb, and Zn) 
from Tensift River water. This assessment was conducted 
by percolating untreated water through two columns filled 
to a uniform sand height of 10 cm. Before each experiment, 
a continuous overnight flow of distilled water through the 
columns at a rate of 20 ml/min was employed to eliminate 
any residual metal elements (Farrag et al., 2017).

To investigate the influence of water inlet flow rate 
on the dynamics of waterborne metallic pollutants, two 
columns with identical diameters (D=10cm) were utilized, 
filled to the same sand height of 10 cm. Water samples 
were systematically poured through these columns at three 
distinct flow rates: 6 ml/min, 10.1 ml/min, and 20 ml/min. 
Effluent from the filtration column was collected through 
a test tube connected to the bottom opening. Subsequently, 
the collected water samples were preserved in ice within a 
designated container and subjected to analysis within 24 
hours of collection.

2.1 Studied Location 2.2 Slow Sand Filtration Experiment 
2. Material and Methods

 Figure 1. Geographical locations of Draa Lasfar mine and the 
Tensift River in the Marrakech Region.

3. Results and Discussion
Table 1 presents the textural characteristics of the 

sand employed in the study. Table 2 outlines the average 
concentrations of lead (Pb) in Draa Lasfar mine wastewater 
(DW) and Tensift River water before (WB) and after (WA) 
the receipt of mine wastewater. Figures 2, 3, 4, and 5 depict 
visual representations of the concentrations of metallic trace 
elements (Cd, Cu, Pb, and Zn) in the reclaimed solutions 
(effluent).

Sieve size (mm) Retained weight (g) % of retained weight % of cumulative weight

0.3 338 16.9 16.9

0.15 1358 67.9 84.8

0.09 218 10.9 95.7

0.075 42 2.1 97.8

0.001 44 2.2 100

Table 1. Particle size analysis of the sand
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These results indicate a progressive shift in the 
concentrations of the investigated metallic trace elements in 
effluents, showing a gradual increase and stabilization toward 
a maximum equilibrium value (Ω), contingent on the specific 

Table 2. Chemical and physical properties of DW, WB, and WA.

Parameters DW WB WA

pH 6.79 ± 0.19 7.01 ± 0.98 7.03 ± 0.11

O2 (mg/l) 0.21 ± 0.11 6.81 ± 0.29 6.59 ± 0.39

T (°C) 28.09 ± 0.38 27.49 ± 0.41 27.69 ± 0.48

CE (mS/cm) 4.02 ± 1,01 4.71 ± 0.78 4.39 ± 0.57

SM (mg/l) 78.28 ± 1.62 56.68 ± 2.57 57.78 ± 4.46

SO4
2-

  (mg/l) 192.21 ± 6.36 100.72 ± 5.72 123.66 ± 8.35

Cl- (mg/l) 2356 ± 24.51 80.73 ± 12.81 1819 ± 13.12

NH4
+ (mg/l) 4.12 ± 1.21 5.92 ± 1.73 4.54 ± 1.22

NO2
- (mg/l) 1.72 ± 0.41 9.14 ± 1.12 9.63 ± 1.47

Ca+ (mg/l) 1358.68  ± 24.96 218.89 ± 27.48 468.86 ± 17.92

K+ (mg/l) 111.1 ± 10.12 77.42 ± 20.89 104.48 ± 12.03

Na+ (mg/l) 383.38 ± 21.78 225.34 ± 25.67 274.39 ± 19.12

PO4
3- (mg/l) 6.58 ± 1.75 44.76 ± 3.48 37.57 ± 4.77

Metallic trace elements 

Cd (µg/l) 6.1 ± 0.8 3.4 ± 0.8 4.2 ± 1.2

Cu (µg/l) 89.9 ± 4.9 45.9 ± 6.5 66.9 ± 6.0

Pb (µg/l) 455,7 ± 72,5 131.9 ± 18.0 314.9 ± 42.9

Zn (µg/l) 889.1 ± 36.1 529.9 ± 31.9 797.1 ± 26.9

 Figure 2. Cd concentration evolution in filtered water over time at 
three distinct inlet flow rates.

 Figure 4. Pb concentration evolution in filtered water over time at 
three distinct inlet flow rates.

 Figure 3. Cu concentration evolution in filtered water over time at 
three distinct inlet flow rates.

 Figure 5. Zn concentration evolution in filtered water over time at 
three distinct inlet flow rates.



metallic trace element and its initial concentration in the 
inlet water (Barkouch et al., 2007). Notably, this equilibrium 
value remains nearly identical to the concentration of the 
initial water (influent).

Furthermore, the outcomes highlight that the efficiency 
of the filtration process, designed for water decontamination, 
is notably influenced by the water inlet flow rate in the 
filtration columns (Barkouch et al., 2018). Lower water 
inflow rates demonstrate a more effective removal of metallic 
pollutants than higher rates. This phenomenon is attributed 
to the prolonged residence time of metal pollutants in the 
sand filter due to the resistance imposed by the sand bed, 
facilitating the establishment of chemical bonds on exposed 
binding sites. The slow filtration rates result in an extended 
contact time between the filtered water and the sand filter, 
progressively enhancing the fixation of metallic pollutants 
until the saturation of sand binding sites, evident at the end 
of the filtration process (approximately 300 min).

Results also show that the removal efficiencies for 
specific metallic trace elements (Cd, Cu, Pb, Zn) were 
indeed variable, as detailed in Figures 2, 3, 4, and 5. Copper 
(Cu) demonstrated the highest removal efficiency, followed 
by cadmium (Cd), lead (Pb), and zinc (Zn). The observed 
removal efficiencies were dependent on the flow rate through 
the filtration columns. For instance, at the highest flow rate 
tested (20 ml/min) at 60 min, Cu removal efficiency was 
approximately 43.4 %, whereas Cd, Pb, and Zn removal 
efficiencies were around 40%, 14.3%, and 5%, respectively. 
As the flow rate decreased, the removal efficiencies for 
all metals increased, confirming the inverse relationship 
between flow rate and residence time in the filter bed (Casas 
and Bester, 2015).

The particulate nature of sand introduces distinctive 
behaviors, with varying residence times for solutes within 
different zones of the sand bed. Achieving concentration 
equilibrium takes considerably longer with lower water 
flow rates compared to higher rates with greater hydraulic 
conductivity. This non-equilibrium condition may arise 
during mass transfer processes, with weak water flow rates 
leading to preferential interactions between solutes and 
sand binding sites. As depicted in Figures 2, 3, 4, and 5, the 
exhaustion of sand particulate beds occurred more rapidly 
at higher bed water flow rates (Chowdhury et al., 2013), 
resulting in an earlier breakthrough point. The breakpoint 
time decreased with increasing water flow rate, indicating 
insufficient residence time for metallic pollutants to establish 
bonds with the sand, leading to an early breakthrough. 
Lower water flow rates produced extended breakthrough 
curves, signifying the treatment of a higher solution volume, 
attributed to the slower transport caused by a reduction 
in diffusion coefficient or mass transfer coefficient 
(Abdulhusain and Abd Ali, 2023).

by analyzing experimental data obtained at the laboratory 
level. Several mathematical models have been designed to 
evaluate the efficiency and feasibility of implementing this 
process on a large scale (Abdiyev et al., 2023). Predicting 
the column adsorption process in slow sand filtration 
is crucial for anticipating both the breakthrough curve 
(concentration-like profile) and the adsorption capacity of 
sand for metallic trace elements under specific operating 
conditions (Benjelloun et al., 2021). The anticipated behavior 
of these columns can be projected using established models 
like Adams–Bohart, Thomas, and Yoon–Nelson, playing a 
pivotal role in designing an effective fixed-bed adsorption 
system with optimal conditions (Barkouch et al., 2019). 
Notably, these models have yet to integrate the influence 
of water flow rates into their mathematical expressions 
for water decontamination. The modeling of the slow sand 
filtration mechanism is based on its resemblance to compliant 
processes having a unique logistic model, represented by the 
following formula:

d[M](t)/dt = Q*P*[M](t)*(1 – [M](t)/Ω)  (Barkouch et al., 2019)  

In the equation, Q represents the water flow rate, and the 
constant P incorporates various parameters influencing the 
transfer of metallic trace elements from contaminated water 
into the particulate bed (Barkouch et al., 2007). Additionally, 
Ω signifies the maximum equilibrium value of the effluent 
achieved at the particulate bed’s maximum adsorption 
capacity.

The MATLAB code employed for Cd is structured as 
follows:

T=300; dt=1; k=0.8; om=4, Q1=0.06; Q2=0.10; Q3=0.20;
t=0:dt:T;
F0=0.1;
[M,N]= size(t);
F=zeros(M,N);
F1(1)=F0;
F2(1)=F0;
for i=1:T-1
F1(i+1)= Q1*P*(1-(F1(i)/om))*F1(i)*dt + F1(i);
F2(i+1)= Q2*P*(1-(F2(i)/om))*F2(i)*dt + F2(i);
F3(i+1)= Q3*P*(1-(F3(i)/om))*F3(i)*dt + F3(i)
end
plot(t, F1,’o-black’,t, F2,’R--*’,t, F3,’o-b’)
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 Figure 6. Breakthrough curves of metallic trace elements adsorption 
under different inlet water flow conditions.

4. Modeling of Analytical Results
Modeling is an important tool in designing, scaling up, 

and optimizing environmental engineering processes such 
as slow sand filtration (Al-Haj-Ali and Al-Matar, 2024). 
The process functioning dynamics of slow sand filtration 
columns with sand as the adsorbent can be conceptualized 
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•	 Optimization of Flow Rates where the flow rate 
must be balanced with the water demand and 
filtration capacity. 

•	 Long-term sustainability where the filter adsorption 
capacity should be monitored. Periodic regeneration 
or replacement of the sand filter might be necessary 
to sustain high levels of heavy metal removal over 
extended periods. 

•	 Integration with other treatment methods to further 
improve water quality. Slow sand filtration could be 
integrated with other treatment technologies, such 
as ion exchange or advanced oxidation processes, to 
target a broader spectrum of contaminants.
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