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Abstract

1. Introduction

Water is indispensable to all life processes and cannot be 
replaced. In addition to being a source of power and beneficial 
resource consumption within the country, agriculture, and 
industry, water is also important in transportation. Rainfall 
is a region’s primary source of water, and it has a significant 
impact on agriculture. Plants obtain water from both natural 
sources and irrigation. Forecasting the likelihood of rainfall 
is crucial because crop production, especially in rain-fed 
areas, depends on rainfall patterns that can be analyzed 
using historical hydrological data and statistical methods. 
Probability distribution or occurrence aids in connecting the 
size of extreme occurrences such as flooding, droughts, and 
violent storms with the amount of times they occur, so that 
the likelihood of occurrence over time can be predictably 
calculated. The collection of hydrological data can be fitted 
with a frequency distribution to determine the likelihood that 
a random parameter will occur. To match the distribution, 
statistical parameters are employed to assess the hydrological 
data and evaluate its variability. For planning water resources, 
a number of models, ranging from conceptual to empirical 
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Several engineering constructions, such as canals, bridges, culverts, and road drainage systems, depend on rainfall for their 
creation. Different types of rainfalls normal, deficit, excessive, and seasonal are all understood using the daily rainfall data 
for the seven-year timeframe (2015–2021). Farmers, urban engineers, and planners of water resources will all benefit from the 
knowledge provided by this analysis as they determine the availability of water and plan the appropriate storage. To examine 
the variability in rainfall, the average, total monthly and annual rainfalls were determined. Most existing techniques used 
the curve number method to compute statistical rainfall runoff for a particular region; this technique ignores the effects of 
rain intensity and duration because it lacks an expression for time. The Soil Conservation Service curve number method is 
adaptable and widely used for runoff estimation. The main scope of this paper is to compute the statistical analysis of rainfall-
runoff for the state of Andhra Pradesh. The SCS–CN method is implemented in Google Earth Engine (GEE) on the satellite 
images to estimate the runoff for the state of Andhra Pradesh. The result demonstrates that the average and total runoff values 
from 2015 to 2021 are 151.1786, and 1058.25, respectively, and their average and total precipitation values are 926.5884 and 
6486.119. And this research work finds the facts: the year 2020 has the highest rainfall (1276.32 mm); the year 2016 has the 
lowest runoff (591.33). Engineers and farmers will be able to determine the necessary input value for the design and analysis 
of engineering constructions as well as for crop planning with the assistance of the computed detailed statistical analysis of 
this region.
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and physically based, have been developed. The most crucial 
hydrological component is run-off. The establishment of soil 
conservation procedures for projects was delegated to the 
Soil Conservation Services (SCS), which was established 
in 1933 (Abdul Ghani et al., 2016waterways, irrigation 
schemes, water harvesting, erosion control structures, and 
groundwater development strategies requires accurate 
estimation of surface runoff. However, hydrologists in Saudi 
Arabia face serious challenges, specifically due to the rare 
availability of surface runoff data. In this study, the soil 
conservation service-curve number (SCS-CN). In order to 
simulate the runoff process, the data-driven models identify 
the ideal correlation between the data inputs and the result 
series. In order to explain variations in runoff modeling and 
flood prediction, the benefits and drawbacks of the models 
above were finally explored (Ahmad et al., 2022). To estimate 
the surface run-off, Ahmad recommended taking into 
account factors such as soil, antecedent rainfall, geographical 
distribution, and land use/land cover (LULC) type. This 
classification represents a significant accomplishment for 
the SCS curve number (CN) method, which provides an 
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observational connection to estimate run-off and considers 
initial abstraction, depending on the soil variety and LULC 
(Al-Ghobari et al. 2020). The CN approach is also used to 
calculate surface run-off by several of the popular models, 
like SWAT and HEC-HMS (Anderson et al., 2004; Gholami 
and Khaleghi, 2021). The SCS model was initially created 
for the USA to calculate the actual surface water runoff from 
tiny basins’ few rainfalls  (Animashaun et al., 2020which 
is of prime importance in hydrological engineering, 
agricultural planning and management, environmental 
impact assessment, flood forecasting, and others fields. 
This article reviews the methodology and associated 
hydrological models used for runoff estimation along with 
their advantages and limitations. Furthermore, discussion 
focuses on the potential applications of Remote Sensing (RS, 
Arnold and Allen, 1996, Arvind et al., 2017). `

The incident in December 2014 is one example of how 
an unforeseen heavy rainfall storm contributed to rainfall 
totals those broke records. Many of its occurrences are proof 
of global warming and climate change, which will have an 
impact on these extreme rainfall events (Baquero et al., 2005). 
In the past, highly accurate classical rain gauges or wide-
area microwave radars have been used to confirm rainfall 
measurements. Rainfall occurrences’ drop size distribution 
(DSD) must be investigated in order to create and validate 
more precise rainfall forecast algorithms. The dispersion of 
drop sizes will be investigated and used in the analysis of 
rain acquisition with a disdrometer, utilizing observations 
from the NASA TRMM satellite and rain gauges (Baquero et 
al., 2005). Rapid development over the past few decades has 
significantly altered the LULC pattern, which affects CN and 
hydrological factors affecting catchment run-off. Geospatial 
technology advancements make it easier to incorporate these 
elements when spatially and temporally estimating run-off. 
The utilization of digital elevation models for hydrological 
modeling depending on an area’s topography has been 
made possible by the application of GIS (Soulis and Dercas, 
2007). The soil composition, drains, LULC, geography 
parameters, and other region features can be extracted 
using RS and stored as a georeferenced database in a GIS. 
In the GIS context, the retrieved layers are then integrated 
with meteorological information for further analysis, 
interpretation, and visualization of evolving rainfall-runoff 
models (Chormanski et al., 2008, Sayd and Mubi, 2020). 
Employing a high-quality land surface model, such as a 
Digital Elevation Model (DEM), alongside data from Earth 
observation satellites’ visual and radar systems is essential 
for identifying flood-prone regions and analyzing the 
impacts of flood events. This integrated approach enhances 
the understanding of flood dynamics and facilitates more 
effective flood management strategies (Ebrahimian et al., 
2009). In order to categorize and analyze watershed areas 
and runoff models, remote sensing methods can supply data 
about the land surface’s space and time. In order to confirm 
the results of spatial models, they can measure surface 
characteristics (like surface hardness, LULC class, etc.) 
and their time-based variations on the one hand and relate 
geologically significant areal phenomena on the other  (Eliza 
et al., 2016, Gupta and J. Dixit, 2022). 

According to the current statistical study, which offers 
a clear picture of rainfall data, the region does not have 
enough rainfall to support wet crop production. Improved 
irrigation and crop production in this region depend on the 
coordinated use of groundwater and accessible rainfall. 
The Soil Conservation Service Curve Number (SCS-CN) 
method is a widely used hydrological model for estimating 
direct runoff or infiltration from rainfall. Developed by the 
USDA’s Soil Conservation Service, this method relies on 
a curve number (CN) that reflects land use, soil type, and 
antecedent moisture conditions (Soulis and Valiantzas, 2012, 
Soulis and Valiantzas, 2009).

The synergistic approach of remote sensing and 
GIS techniques enables efficient flash-flood monitoring 
and damage assessment in the Thessaly plain area. This 
integration enhances the accuracy of flood prediction and 
provides valuable insights for disaster management and 
mitigation strategies (Psomiadis et al., 2019). Empirical data 
from typhoon occurrences was used to test the correctness 
of the surface runoff model (Psomiadis et al., 2020). For 
a few specific rainfall occurrences in the watershed, the 
runoff depth was calculated using the NRCS-curve number 
approach (Rajbanshi, 2016.) A revisit of NRCS-CN Inspired 
Models coupled with RS and GIS for Runoff Estimation 
examines enhanced runoff estimation by integrating the 
NRCS-CN model with remote sensing (RS) and GIS. This 
approach improves spatial accuracy by using satellite data 
to capture land use, soil, and rainfall variability (Verma et 
al., 2017). Rainfall-Runoff Risk characteristics of Urban 
Function Zones in Beijing Using the SCS-CN Model 
examines runoff risks across various urban zones in Beijing. 
The SCS-CN model is applied to assess how land use and 
soil types influence runoff potential, supporting targeted 
flood management strategies for diverse urban functions 
(Wei et al., 2018).

The application of the NRCS-CN method enhances 
watershed runoff estimation and disaster risk assessment by 
using land and soil data to predict runoff levels. Integrating 
geomatics tools with this method improves accuracy in 
assessing natural hazards. This approach aids in disaster 
preparedness and risk management (Zhang, 2019). Research 
on Rainfall Estimation Based on Improved Techniques 
explores advancements in methods for more accurate rainfall 
estimation. The improved approach enhances the integration 
of real-time data, leading to better rainfall predictions 
(Zhang et al., 2022).

The SCS-CN approach was a useful tool in this study 
since it made it easy but effective to determine the direct 
runoff reaction for each soil, land usage, and maintenance 
combination (Jehanzaib et al., 2022). It incorporates several of 
the parameters of soil, land utilization, and land maintenance 
factors that have an impact on runoff generation into a 
single CN factor and includes simple-to-obtain and well-
documented environmental inputs (Ling et al., 2020, Attah 
et al., 2020). Studies on rainfall variability used the linear 
regression model (LRM), precipitation concentration index, 
and rainfall variability index. Nonparametric Mann-Kendall 
(MK) tests and the Kriging interpolation method were 



utilized for trend analysis and change point identification, 
as well as for the spatial analysis of rainfall (Salahat and 
Al-Qinna, 2015). Hypothetical probability distributions 
for initial loss data were evaluated for their influence on 
design flood estimates. The Beta and Gamma distributions 
effectively approximate initial losses in Australia. Sample 
size significantly impacts the accuracy of probability 
distributions, with mixed results observed based on varying 
thresholds (Loveridge and Rahman, 2021). To examine the 
rainfall-runoff stake features of the research field, the SCS-
CN model was used. High runoff risk cluster locations were 
primarily found in the study area’s centre, while areas with a 
low likelihood of runoff were mostly found among the roads. 
The two CN system approach outperforms earlier methods 
focused on a completely asymptotic CN value determination 
and offers reasonable accuracy (Psomiadis et al., 2020). The 
observed CN value fluctuation cannot always be explained 
by CN value variation based solely on AMC group (Moglen 
et al., 2022). The major goal of the 7KH model is to offer 
a useful tool in regions with severe fresh water shortages, 
growing water needs, and a severe lack of hydrometric data 
(Musgrave., 1955). Rainfall data was acquired from a global 
weather station using the Thiessen polygon method, which 
is related to a Geographic Information System application. 
The findings indicated that two rainfall stations described 
the rainfall variation across the study object (Nganro et al., 
2020). 

Measuring rainfall runoff can be a challenging 
task due to various factors that can affect the accuracy 
of measurements. It presents several challenges. First, 
inadequate instrumentation can significantly impact 
accuracy; the quality and proper calibration of measurement 
devices are crucial, as some instruments may lack 
sensitivity to low flows or may become clogged with debris. 
Additionally, land use changes, such as deforestation and 
urbanization, can alter the surface properties of a catchment, 
thereby affecting its hydrological response to rainfall. For 
instance, urbanization often results in increased impervious 
surfaces and reduced infiltration, leading to higher and 
faster runoff. The topography of an area also plays a role; 
steep slopes can cause rapid runoff and erosion, while flat 
land may allow water to puddle and evaporate before it 
contributes to runoff. Furthermore, antecedent moisture 
conditions are significant, as the soil’s moisture content 
before a rainfall event influences runoff behavior. Saturated 
soil reduces infiltration and leads to increased runoff. Lastly, 
measuring rainfall runoff through satellite data introduces 
its own challenges, as remote sensing techniques come with 
limitations and uncertainties that must be considered.

Measuring rainfall-runoff using satellite data presents 
several challenges. First, the spatial and temporal resolution 
of satellite data may be insufficient to capture the detailed 
hydrological processes that influence runoff, often being too 
coarse to detect small-scale variations in rainfall and runoff. 
Additionally, satellite measurements typically cover only 
limited areas, which may not represent the entire catchment, 
complicating efforts to extrapolate results, particularly in 
regions with complex topography. Calibration and validation 

of satellite data against ground-based measurements 
are essential for ensuring accuracy, but this process can 
be challenging due to the limited number of ground 
observations. Furthermore, cloud cover and atmospheric 
interference can significantly impact the accuracy of 
satellite-based rainfall measurements, as clouds may obscure 
the satellite’s view of the Earth’s surface, while atmospheric 
elements, such as water vapor, can distort readings. The 
cost and limited availability of satellite data, especially in 
developing countries, can hinder widespread use. Finally, the 
algorithms employed to derive rainfall-runoff from satellite 
data have inherent limitations and uncertainties; different 
algorithms may yield varying results, and their accuracy 
can be influenced by the location and type of rainfall event. 
While satellite-based measurements of rainfall-runoff 
have the potential to provide valuable insights, they come 
with their own set of challenges that need to be addressed 
to ensure their accuracy and reliability. Proper calibration, 
validation, and careful interpretation of the results are 
necessary to obtain meaningful insights from satellite-based 
measurements.

Our research work considered the following challenges 
and problems:

Based on the challenges, discussed above, a system is 
proposed to estimate the rainfall-runoff and precipitation 
for Andhra Pradesh from 2015 to 2021 by applying the SCS 
curve number technique to the land and land cover data and 
the soil texture class. The variation in precipitation and runoff 
for every year and the correlation among the years in rainfall 
is analyzed and presented.  The remainder of the paper is 
organized as follows: Section 2 provides a comprehensive 
analysis of the various methods developed for estimating 
and assessing rainfall, runoff, and precipitation in a specific 
region. Section 3 covers the data collection, study area and 
methodologies used in this research. Section 4 explains the 
system model, architecture, and working principles of the 
current study. Section 5 describes the results produced by the 
proposed model and offers a detailed comparative analysis. 
Finally, Section 6 concludes the paper and discusses future 
directions.

• Spatial and temporal resolution, data availability, 
land use, and limited coverage are needed to provide 
the solution.

• Most of the research work considered a small 
regional area for their study in rainfall-runoff 
estimation.

• No comparison is provided based on the metrology 
department’s data in most of the research work.

• Finding the variation in the precipitation and runoff 
for every year and month will assist the researchers 
in performing predictions.
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2. Literature Review   

     Zhang et al. (2011) proposed a NRCS-CN approach 
for calculating watershed runoff and risk of disasters, which 
produced 90.8% accuracy. When runoff is poor, this strategy 
is useless for reducing errors. Ahmad  et al. (2022) analyzed 
the long-term variation in rainfall and trends using satellite 
data by employing artificial neural networks. In Gujrat, the 



maximum annual rainfall was found with a statistically 
significant upward trend (50.8 mm/decade). Wetchayont 
et al. (2023) used the geostatistical method to estimate 
rainfall in Bangkok by utilizing satellite, radar, and gauge 
rainfall datasets. In this work, the mean estimated rainfall 
ranged from 0.0012 to 3.80 mm h-1 and 0.02 to 2.53 mm 
h−1. Gupta et al. (2022) used the NRCS-CN approach while 
integrating GIS and remote sensing. The normal runoff 
depth and mean annual precipitation ranges are 444.50 to 
1960 mm and 936 to 3520 mm, respectively. Fowler et al. 
(2022) described how rainfall-runoff interactions changed 
before, during, and after Australia's Millennium Drought. 
The Millennium Drought and droughts from 1950 to 1990 
are contrasted with two droughts that occurred before 1950. 
Saragih et al. (2022) used observational rainfall data from 
Central MKG Region I Medan to evaluate the CHIRPS 
rainfall estimation data. November 2018 saw the highest 
CHIRPS monthly correlations of 0.520. Raza et al. (2023) 
proposed Irrigation Management Using GIS, which could 
help to comprehend rainfall calculation is that it measures 
the transference of soil, plants, and environment and 
produced accuracy 75.47%.  Hassan et al. (2022) proposed  
a Machine Learning algorithm for Radar-Based Rainfall 
Assessment. The investigation also revealed that the RMG 
and RBRT(RC) estimators significantly overestimate the 
overall seasonal rainfall accumulation by around 60%. 
Soulis and Valiantzas (2012) proposed a rainfall estimation 
model, which will reduce the relative error to 3.18% and 
accounts for 43.5% of the precipitation estimate without 
filter wave calibration. Liu et al. (2023) suggested a deep 
learning-based approach to assess the impact of artificial 
precipitation, produced residual rainfall 9.98 mm in Shiyan 
region on 26th April 2018. Seong et al. (2022) Proposed 
Grid Rainfall-Runoff Model (GRM) for assessment of 
Uncertainty measures, which produced logarithmic Nash-
Sutcliffe Efficiency 0.97. Loveridge and  Rahman (2021)  
proposed Monte Carlo method to find variability in design 
flood estimates; it reduces the relative error to 3%. Sishah 
(2021) used SCS-CN approach to assess the rainfall runoff 
in the awash river basin located in Ethiopia, the correlation 
coefficient of 0.9253 is produced between the anticipated 
runoff and the actual runoff. Moglen et al. (2022) used the 
NRCS Curve Number Technique for Determining the Curve 
Number from Rainfall-Runoff values; it produced the mixed 
value from 0.05 to 0.20. Gholami and Khaleghi (2021) 
modelled the rainfall-runoff mechanism using a multilayer 
perceptron (MLP) network. For the date 15th, 1995, the 
correlation between the observed and simulated values is 
0.6, and the correlation between the observed and simulated 
information is 0.6. Mohammadi et al. (2022) proposed a 
multi-conceptual method using machine learning for runoff 
and rainfall predictions, the model produced the accuracy 
of 68% of NSE.
3. Materials and Methods

The Terra and Aqua combined Moderate Resolution 
Imaging Spectroradiometer (MODIS) Land Cover Type 
(MCD12Q1) Version 6.1 data package provides global 
land cover categories at yearly intervals from 2001 to 2021 

(https://lpdaac.usgs.gov/products/mcd12q1v061/#tools). 
The MCD12Q1 V 6.1 data product is generated using trained 
classifications of MODIS. For information on soil texture 
categories (USDA system) for six typical soil depths, another 
dataset, called OpenLand Map Soil Texture Class (USDA 
System)(https://developers.google.com/earth-engine/
datasets/catalog/OpenLandMap_SOL_SOL_ TEXTURE-
CLASS_USDA-TT_M_v02), is used to derive from the soil 
texture package in R's expected soil texture fractions. One of 
the Curve Number approaches is mainly used in the current 
case research, which assumes determining the catchment's 
surface runoff. Calculating the amount of runoff from the 
land surface that enters rivers or streams is made more 
accessible by using the SCS-CN approach. The dataset, 
used as the rainfall dataset, is "CHIRPS Daily: Climate 
Hazards Group InfraRed Precipitation with Station data 
(Version2.0Final)" (https://developers.google.com/earth-
engine/datasets/catalog/UCSB- CHG_CHIRPS _DAILY). 
A 30+ year quasi-global rainfall dataset is available under 
Climate Hazards Group InfraRed Precipitation with Station 
Data (CHIRPS), combining in-situ station data with 0.05° 
resolution satellite imagery.

      The present study concerns the state of Andhra 
Pradesh in India. As shown in Figure 1, the state is located 
in India’s south-eastern coastline region. Its 162,975 km2 
make it the seventh-largest state in terms of size (62,925 sq 
mi). 

The terrain of the state is diverse, spanning from the 
Nallamala Hills and Eastern Ghats Hills to the Bay of Bengal 
coastlines, which sustain a wide range of ecosystems and a 
vast diversity of flora and animals.  The state is traversed by 
its two principal rivers: the Krishna and Godavari. The state’s 
975-km-long coastline stretches across the Bay of Bengal 
from Srikakulam to Nellore (606 mi). The entire population 
is made up of 14,610,410 urban residents and 34,776,389 rural 
residents, for a population share of 29.6%. Andhra Pradesh’s 
economy is mostly dependent on agriculture and cattle. 
Four large Indian rivers—the Godavari, Krishna, Penna, 
and Tungabhadra—provide irrigation and pass through the 
state. 60 percent of the population works in agribusiness and 
associated sectors. Rice is the state’s primary food crop and 
staple diet.   

In this study, using statistics and data processing on the 
MODIS/061/MCD12Q1 dataset, gridded rainfall products 
that are available weekly, seasonally, and annually were 
extracted, deploying the GEE platform using the ‘ee.
ImageCollection’ technique and the filter command (ee.
Filter.calendarRange). The ‘clip’ function was then applied 
to restrict the field of study and obtain relevant information 
in accordance with the field of study. The dataset SOL_
TEXTURE-CLASS_USDA-TT_M/v02 is processed 
to determine soil classes and convert hydrological soil 
categories like A, B, C, and D depending on their infiltration 
capacity. The operation ‘ee.Filter.date’ is applied to the 
CHIRPS dataset to filter the daily rainfall information for 
the specified duration.

3.1 Dataset

3.2 Study Area

3.3 Data Pre-processing
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 Figure 1. Map of the state of Andhra Pradesh

4. Research Methodology

Two key theories have been put forth, and the SCS-CN 
technique depends on the water balance computation. The 
SCS-CN method is not represented by a single mathematical 
model but rather a set of equations and lookup tables. The 
process is based on empirical relationships and lookup tables 

4.1 System Model

3.4 Methods
3.4.1 Curve Number (CN) Method
A common hydrological approach for calculating direct 

runoff from rainfall events in watershed modelling is the 
Curve Number (CN) method. It was created as a component 
of the Soil Conservation Service (SCS) methodology. The 
quantity of rainfall that results in direct runoff is estimated 
using the CN technique, which takes into account a number 
of variables including soil type, land use, and prior soil 
moisture conditions. It is particularly useful in predicting 
surface runoff in agricultural and urban areas. The CN 
method involves the following steps:

1. Determine Soil Hydrological Group: Soils are 
categorized into four hydrological classes (A, B, 
C, and D) depending on their infiltration features. 
These groups are assigned according to soil 
properties like texture, permeability, and depth. 
Each group has a corresponding range of CN values.

2. Assign Land Use Category: Different land use or 
land cover types within the watershed are classified 
into specific categories. Examples of land use 
categories include forest, agriculture, urban, and 
grassland. Each land use category has an associated 
CN value range.

3. 3. Establish Antecedent Soil Moisture Condition: 
Antecedent soil moisture is the amount of 
moisture in the soil prior to a rainfall occurrence, 
which affects the runoff response. Antecedent 
soil moisture conditions are classified into three 
categories: dry, normal, and wet. Each condition 
has a corresponding adjustment factor applied to 
the CN value.

4. Determine Curve Number (CN): Once the 
hydrological group, land use category, and 
antecedent soil moisture condition are known, the 
CN value is determined. This is typically done 
using lookup tables the SCS provides or through 
equations specific to the region or application.

5. Calculate Direct Runoff: With the CN value 
determined, the rainfall data for a specific event can 
be utilized to calculate the direct runoff.
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developed by SCS. These relationships are used to calculate 
direct runoff from precipitation occurrences depending on 
the hydrological, soil, and use of land factors. As shown 
in equation (5), the Curve Number (CN) parameter must 
be determined based on soil and land use characteristics. 
The CN value is typically determined using lookup tables 
provided by the SCS or through equations that consider 
the soil hydrological features and land use factors. The CN 
value is influenced by three key factors: Land usage, soil 
type, and previous soil moisture levels. This method assigns 
different CN values to different combinations of these 
factors, ranging from 0 to 100. Lower CN scores represent 
greater significance infiltration rates, while greater CN 
values indicate lower infiltration rates. The SCS-CN method 
provides lookup tables or equations to determine the CN 
value based on the soil hydrological group (A, B, C, or D), 
land use category (such as forest, agriculture, urban), and 
antecedent soil moisture condition (dry, normal, or wet). 
These lookup tables or equations vary depending on the 
region and specific application.

To estimate the direct runoff in the study region, empirical 
methods like the SCS-CN methodology are typically utilized 
as shown in Figure 2. Another cloud-based computing 
platform is GEE, which integrates Google’s computational 
infrastructure with freely available GIS and remote sensing 
datasets. Any user can use any web browser to access GEE. 
It is freely accessible to everyone and effectively handles 
massive data thanks to automatic parallel processing. The 
vast collection of spatial data that GEE offers makes it easier 
to choose input data. Users can select their datasets from big 
sets of image collections using various filter techniques.

where P represents daily rainfall, Ia original simplification, 
F represents effective retention, Q represents straight surface 
run-off, and S represents the possible maximum durability. 
CN1, CN2, and CN3 values are calculated using the formula. 
Soil texture is converted into 4 types of soil groups: A == 
1, B == 2, C == 3, and D == 4, where S is measured in 
millimeters and CN is a dimensionless run-off coefficient 
that is influenced by the type of soil, the use of the land, 
and the preexisting moisture conditions (AMC). The relative 
levels of dryness or moisture of a watershed, which varies 
continuously and has a big impact on run-off, is known as 
antecedent moisture.

Depending on the LULC and the soil category 
characteristics, CNs has been proposed. CN can be derived 
from the following equations:

The required datasets, MCD12Q1 version 6.1 for land 
cover types, OpenLandMap Soil Texture Class for classifying 
the soil texture groups, and Climate Hazards Group Infrared 
Precipitation with Station Data (Version 2.0), are imported to 
the GEE through the JavaScript API. The soil texture map is 
transformed into different kinds of soil categories. 

The SCS––CN equation is written by
Q = (P-Ia)

2  /   P-Ia + S      for     P > Ia                                                                        (1)
Q = 0  for     P < Ia                                                                                                                         (2)

CN1  =   CN2 /(2.281-(0.0128*CN2))                                     (3)   
CN3  =  CN2 /(0.427+(0.00573*CN2))                                   (4)

Figure 2. Overall flow diagram to estimate the rainfall-runoff

The SCS-CN method does not have a specific architecture. 
Instead, it is a conceptual framework or methodology for 
calculating direct runoff from rainfall occurrences based 
on soil, land use, and hydrological features. The SCS-CN 
method involves the following key components:

 4.2 Architecture and working

• Rainfall Data: Rainfall data, such as precipitation 
depth and intensity, is collected or obtained for the 
field of study. This data serves as input to the SCS-
CN method.

• Soil Hydrological Group: The SCS-CN method 
classifies soils into hydrological categories (A, B, 
C, or D) depending on their infiltration properties. 
The hydrological group is determined based on soil 
texture, permeability, and other soil characteristics. 
Lookup tables or equations are used to assign the 
appropriate hydrological group to each soil type in 
the field of study.

• Land Use Categories: Land use or land cover 
information is considered in the SCS-CN method as it 
affects the amount of runoff generated. Different land 
use categories, such as forest, agriculture, or urban 
areas, have different runoff characteristics. Lookup 
tables or equations are used to assign the appropriate 
land use category to each area within the study area.

• Antecedent Soil Moisture Conditions: The SCS-
CN method considers the antecedent soil moisture 
conditions, which represent the moisture content in 
the soil before a rainfall occurrence. These conditions 
can be classified as dry, normal, or wet. Lookup 
tables or equations assign the appropriate antecedent 
soil moisture condition to each area within the study 
area.

• Curve Number (CN): It represents the cumulative 
impact of soil type, use of the property, and previous 
soil wetness conditions on the runoff process. 

• Direct Runoff Calculation: The SCS-CN method uses 
the CN value and rainfall data to calculate the direct 
runoff from rainfall occurrences.

 Procedure:
1. The required datasets are imported into GEE through 

the JavaScript API.
2. The soil texture map is transformed into different 

kinds of hydrologic soil groups, A, B, C, and D.
3. Curve number selection is done for all possible 

parameters of the four soil types and the LULC data 
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Figure 4. Time Series Plots of Yearly Rainfall Data for Andhra 
Pradesh State for the Year 2021

Figure 5. Time Series Plots of Yearly Rainfall Data for Andhra 
Pradesh State for the Year 2020

categories. 
4. Daily rainfall information pictures are used to make 

daily AMC pictures.
5. To estimate run-off (Q), the equation (1) is used.

5. Results and Analysis     

       The experiment in this study is carried out using the 
Google Earth Engine platform. The GEE comprises a high-
performance, intrinsically catalog computing service, and 

    The rainfall runoff based on soil type, land use, 
antecedent moisture conditions, and rainfall characteristics 
is calculated using precipitation and retention values. 
The formula for calculating the rainfall runoff is given in 
Equation 5:

which was observed on November 11, 2021. And second, 
the maximum runoff value is 24.102; the precipitation value 
is 43.711, which was observed on November 18th, 2021 as 
shown in Figure 4.

Similar trends in rainfall and runoff have been observed; 
both began increasing in August. The maximum runoff value 
is 20.677, and the maximum precipitation value is 39.107, 
observed on October 12th, 2020, as shown in Figure 2. The 
maximum precipitation value of 39.107 was also observed on 
October 12th, 2020, as shown in Figure 5.

The “Observed Value” refers to the actual or observed 
precipitation amount. “Predicted / Measured Value” 
refers to the predicted or measured precipitation amount. 
The numerator of the formula calculates the difference 
between the observed and predicted/measured values. The 
denominator represents the predicted/measured value. The 
result is multiplied by 100 to obtain the percentage value. By 
calculating the percent error, you can determine the accuracy 
of the precipitation prediction or measurement. A lower 
percent error indicates a higher level of accuracy, while a 
higher percent error indicates a more significant deviation 
between the observed and predicted / measured values.

The percent error formula for calculating the accuracy of 
precipitation is shown in equation 6:

a multi-petabyte data catalog that is ready for examination. 
It may be accessed and managed online thanks to an 
application programming interface (API) and a web-based 
interactive development environment (IDE) that facilitate 
quick prototyping and result visualization as shown in Figure 
3. The public data catalogue for the Earth Engine is a multi-
petabyte curated collection of extensively used geospatial 
datasets. Earth-observing remote sensing images make up 
the majority of the catalog. 

5.1 Experimental Setup

5.2 Performance Metrices 

 Figure 3. Experiment setup on the GEE platform

(5)

(6)

5.3 Results
5.3.1 Yearly Rainfall Analysis
Both the rainfall and runoff have followed a similar 

pattern: they began to rise in the middle of August, peaked in 
November, and then began to decline by the end of December. 
The total runoff for the year 2021 is 172.459. The maximum 
runoff value is 26.523, and the precipitation value is 47.222, 
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Figure 6. Time Series Plots of Yearly Rainfall Data for Andhra 
Pradesh State for the Year 2019

Figure 7. Time Series Plots of Yearly Rainfall Data for Andhra 
Pradesh State for the Year 2018

Figure 10. Time Series Plots of Yearly Rainfall Data for Andhra 
Pradesh State for the Year 2015

Figure 11. Rainfall analysis for the month of November 2020

Figure 12. Rainfall analysis for the month of November 2020–
2021

Figure 8. Time Series Plots of Yearly Rainfall Data for Andhra 
Pradesh State for the Year 2017

Figure 9. Time Series Plots of Yearly Rainfall Data for Andhra 
Pradesh State for the Year 2016The total runoff and precipitation values for the year 2019 

are 127.438 and 812.097. The maximum runoff value is 17.377 
and the maximum precipitation value is 35.268, which were 
observed on October 22, 2019. And second, the maximum 
runoff value is 9.98 and the maximum precipitation value is 
20.466, which were observed on December 1, 2019 as shown 
in figure 6.

of 38.225 and 18.20 occurred on December 18, 2015, with 
the dates of November 5, January 10, 14, and 18 receiving 0 
runoff and precipitation as shown in Figure 10.

The total runoff and precipitation values for the year 
2018 were 183.763 and 1198.909. The average runoff and 
precipitation values for the year 2018 were 0.50623 and 
3.30278. The highest precipitation and runoff values of 
12.914 and 30.604 occurred on November 16, 2018, with the 
dates of November 10, January 5, 6, and 7 receiving 0 runoff 
and precipitation as shown in Figure 7.

The total runoff and precipitation values for the year 
2017 are 105.559 and 830.005. The average runoff and the 
amount of precipitation that fell in the year 2017 are 0.289203 
and 2.273986. The highest precipitation and runoff values of 
23.681and 8.402 occurred on October, 2017, with the dates 
of November 8, 9 and 18 receiving 0 runoff and precipitation 
as shown in Figure 8. The total runoff and precipitation 
values for the year 2016 are 63.49 and 591.33. The average 
runoff and precipitation values for the year 2016 are 0.17 
and 1.615. The highest precipitation and runoff values of 
19.225 and 8.046 occurred on December 12, 2016, with 
the dates of November 5, January 14, 18, and 28 receiving 
0 runoff and precipitation as shown in Figure 9. The total 
runoff and precipitation values for the year 2015 are 124.612 
and 783.482. The highest precipitation and runoff values 

5.3.2 Monthly Rainfall Analysis
October and November months are taken into 

consideration for an in-depth analysis of rainfall. The total 
runoff and the amount of precipitation that fell in November 
2021 are 99.05 and 283.372. The average runoff and the 
amount of precipitation that fell in November 2021 are 
9.44 and 3.301. The total and average runoff values for the 
month of September are 9.08 and 0.30. The total runoff and 
the amount of precipitation that fell in November 2020 are 
50.614 and 115.087.  The average runoff and the amount of 
precipitation that fell in November 2020 are 1.687and 3.836. 
The highest precipitation and runoff values of 40.333 and 
23.346 occurred on November 26, 2020, with the dates of 
November 18, 19, and 20, receiving 0 runoff and precipitation 
as shown in Figures 11 and 12.
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Figure 13. Rainfall analysis for the month of November 2019

Figure 16. Rainfall analysis for the month of November 2016

Figure 17. Rainfall analysis for the month of November 2015Figure 14. Rainfall analysis for the month of November 2018

Figure 15. Rainfall analysis for the month of November 2017

The total runoff and the amount of precipitation that 
fell in November 2019 are 6.16 and 29.539. The average 
runoff and the amount of precipitation that fell in November 
2019 are 0.2 and 0.98, respectively. The total and average 
runoff values for the month of October are 51.163 and 1.65, 
respectively. The total and average runoff values for the 
month of September are 30.127 and 1.004 as shown in Figure 
13.

The total runoff and the amount of precipitation that 
fell in November 2016 are 63.49 and 591.333. The average 
runoff and the amount of precipitation that fell in November 
are 2016 0.17347 and 1.615664. The highest precipitation and 
runoff values of 19.225 and 8.046 occurred on December 
12, 2016, with the dates of November 30 and 31 receiving 0 
runoff and precipitation as shown in Figure 16.

The total runoff and the amount of precipitation that fell 
in November 2015 are 68.518 and 193.327. The average runoff 
and the amount of precipitation that fell in November 2015 are 
0.544 and 2.99, respectively. The highest precipitation and 
runoff values of 39.466 and 19.905 occurred on November 
16, 2015, with the dates of November 5 and 27 receiving 0 
runoff and precipitation, as shown in Figure 17.

Figure 18 shows the total runoff and the amount of 
precipitation that fell in September 2015 are 9.577 and 
128.524. The average runoff and the amount of precipitation 
that fell in September 2015 are 0.319 and 4.28, respectively. 
The highest precipitation and runoff values of 14.356 and 
1.934 occurred on September 6, 2015, with the dates of 
September 23 receiving 0 runoff and precipitation. The 
total runoff and the amount of precipitation that fell in 
October 2015 are 16.859 and 91.418. The average runoff 
and the amount of precipitation that fell in October 2015 
are 0.544 and 2.99, respectively. On October 3, 2015, the 
highest precipitation and runoff values were 15.464 and 
3.479 respectively, with October 13, 18, 21 to 25 receiving 0 
precipitation runoff values.

The total runoff and the amount of precipitation that fell 
in November 2018 are 45.681 and 155.04539. The average 
runoff and the amount of precipitation that fell in November 
2018 are 5.168 and 1.5227. The highest precipitation and 
runoff values of 30.604 and 12.914 occurred on November 
16, 2018, with the dates of November 10, 25, and27 receiving 
0 runoff and precipitation as shown in Figure 14.

The total runoff and the amount of precipitation that fell 
in November 2017 are 5.893 and 43.598. The average runoff 
and the amount of precipitation that fell in November 2017 
are 0.1964 and 1.53, respectively. The highest precipitation 
and runoff values of 4.699 and 1.198 occurred on November 
1, 2017, with the dates of November 8, 9, and 18 receiving 0 
runoff and precipitation as shown in Figure 15.
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Figure 18. Runoff and precipitation analysis for Sep & Oct 2015

Figure 19. Runoff and precipitation analysis for the month of Sep 
& Oct 2016

Figure 21. Runoff and precipitation analysis for the month of Sep 
& Oct 2018

Figure 20. Runoff and precipitation analysis for the month of Sep 
& Oct 2017

Figure 19 shows the total runoff and the amount of 
precipitation that fell in September 2016 are 13.068 and 
112.718. The average runoff and the amount of precipitation 
that fell in September 2016 are 0.44 and 3.76. The highest 
precipitation and runoff values of 13.135 and 3.889 occurred 
on September 21 2016, with the dates of September 7 and 8 
receiving 0 runoff and precipitation. The total runoff and the 
amount of precipitation that fell in October 2016 are 1.991 and 
34.555. The average runoff and the amount of precipitation 
that fell in October 2016 are 0.064 and 1.114. The highest 
precipitation and runoff values of 6.236 and 0.807 occurred 
on October 10 2016, with the dates of October 14, 15, 17, and 
25 to 27.

Figure 20 shows the total runoff and the amount of 
precipitation that fell in September 2017 are 18.951 and 
156.636. The average runoff and the amount of precipitation 
that fell in September 2017 are 5.22 and 0.6317. The highest 
precipitation and runoff values of 17.2 and 4.849 occurred on 
September 6 2017, with the dates of September 19 receiving 
0.0001 and 0.094 runoff and precipitation. The total runoff 
and the amount of precipitation that fell in October 2017 are 
41.794 and 180.108. The average runoff and the amount of 
precipitation that fell in October 2017 are 1.384 and 5.81, 
respectively. The highest precipitation and runoff values of 
19.242 and 5.417 occurred on October 4 2017, with the dates 
of October 23 receiving 0 runoff and precipitation.

The total runoff and the amount of precipitation that 
fell in September 2018 are 33.772 and 208.728. The average 
runoff and the amount of precipitation that fell in September 
2018 are 1.004233 and 5.522867, respectively. The highest 
precipitation and runoff values of 19.957 and 6.219 occurred 
on September 19, 2019, with the dates of September 30 
receiving 0.018 runoff and 0.095 precipitations. The total 
runoff and the amount of precipitation that fell in October 
2019 are 68.571 and 254.534. The average runoff and the 
amount of precipitation that fell in October 2019 are 1.650419 
and 6.824129, respectively. On October 22, 2019, the highest 
precipitation and runoff values were 35.268 and 17.377, 
respectively, with October 28 receiving 0.268 precipitation 
and 0.017 runoff values, as shown in Figure 22.

Figure 21 shows the total runoff and the amount of 
precipitation that fell in September 2018 are 42.228 and 
223.995. The average runoff and precipitation that fell in 
September 2018 are 3.766 and 0.438, respectively. The 
highest precipitation and runoff values of 2.336 and 11.972 
occurred on September 16, 2018, with the dates of September 
7 receiving 0 runoff and precipitation. The total runoff and 
the amount of precipitation that fell in October 2018 are 
57.604 and 211.428. The average runoff and precipitation 
that fell in October 2018 are 1.203 and 6.254, respectively. 
On October 5, 2018, the highest precipitation and runoff 
values were 24.812 and 9.738 respectively, with October 30 
receiving 0.293 precipitation and 0.011 runoff values.
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Figure 22. Runoff and precipitation analysis for the month of Sep 
& Oct 2019

Figure 23. Runoff and precipitation analysis for Sep & Oct 2020

Figure 24. Runoff and precipitation analysis for the month of Oct 
& Nov 2021

Figure 25. Year-wise runoff-precipitation analysis

The total runoff and the amount of precipitation that fell 
in September 2020 are 40.759 and 217.792. The average runoff 
and the amount of precipitation that fell in September 2020 
are 1.3586 and 7.2597, respectively. The highest precipitation 
and runoff values of 20.136 and 6.492 occurred on September 
26, 2020, with the dates of September 6 receiving 0.001 and 
0.0338 runoff and precipitation respectively. The total runoff 
and the amount of precipitation that fell in October 2020 are 
82.939 and 256.494. The average runoff and the amount of 
precipitation that fell in October 2020 are 2.675 and 8.274, 
respectively. On October 12, 2020, the highest precipitation 
and runoff values were 30.109 and 20.677 respectively, with 
October 25 receiving 0 precipitation and 0 runoff values as 
shown in Figure 23.

The total runoff and the amount of precipitation that fell 
in September 2021 are 9.088 and 105.518. The average runoff 
and the amount of precipitation that fell in September 2021 
are 0.303 and 3.517, respectively. The highest precipitation 
and runoff values of 12.104 and 2.574 occurred on September 
6, 2021, with the dates of September 16 receiving 0 and 0.195 
runoff and precipitation, respectively. The total runoff and 
the amount of precipitation that fell in October 2021 are 
20.475and 145.872. The average runoff and the amount of 
precipitation that fell in October 2021 are 0.66 and 4.706, 
respectively. On October 5, 2021, the highest precipitation 
and runoff values were 16.397 and 3.424 respectively, with 
October 25 and 26 receiving 0.001 precipitations and 0 
runoff values as shown in Figure 24.

Table 1 shows the total runoff results computed for 
the years 2015–2021, which are 172.459; 209.666; 105.599; 
63.49; and 124.612, respectively. The year 2020 has the 
highest runoff (209.666 percent), and the year 2016 has the 
lowest runoff (63.49 percent).  As shown in Figure 25, the 
year 2018 has the highest precipitation of 1198.909 and the 
lowest precipitation of 591.33, and other precipitation values 
are 993.976, 1104.7, 812.097, 830.005, and so on. Table 2 
shows the runoff and precipitation for the three months 
of September through November from 2015 to 2021. The 
month of September of the year 2020 received the highest 
precipitation value of 217.792. It shows that there will be a 
good correlation like 100 among the precipitation (105.518 
to 156.636) and runoff (9.088 to 33.772) for the years 2015 
to 2021, except for 2020. The years 2016 and 2018 have very 
near precipitation values of 112.718 and 112.968 in the month 
of September.

5.4 Analysis

Table 1. Year-Wise Analysis (2015–2021)

Year Runoff Precipitation

2021 172.459 993.976

2020 280.889 1276.32

2019 127.438 812.097

2018 183.763 1198.909

2017 105.599 830.005

2016 63.49 591.33

2015 124.612 783.482
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Table 2. Three-month analysis for the years 2015-2021

Table 3. Analysis for the month of December (2015-2021)

Table 4. Analysis for the month of January (2015-2021)

Year Month Runoff Precipitation

2021

Sep 9.088 105.518

Oct 20.475 145.872

Nov 99.05 283.372

2020

Sep 40.759 217.792

Oct 82.939 256.494

Nov 50.614 115.087

2019

Sep 33.772 208.728

Oct 68.571 254.534

Nov 39.466 134.546

2018

Sep 12.669 112.968

Oct 37.3 193.88

Nov 45.681 155.045

2017

Sep 18.951 156.636

Oct 41.794 180.108

Nov 5.893 43.598

2016

Sep 13.068 112.718

Oct 1.991 34.555

Nov 0.283 10.225

2015

Sep 9.577 128.524

Oct 16.859 91.418

Nov 68.518 193.327

As shown in Figure 26, November 2016 received a very 
low rainfall precipitation 10.225 than all the years. November 
2021 received 283.372 highest precipitations. November has 
more variations in terms of runoff and precipitation values. 
There is a good correlation among the years 2016, 2018, and 
2021 in September. The month of October 2016 received a 
very low precipitation value of 34.555 compared to all the 
years, and the year 2020 received the highest value for its 
October month of 256.494. There is more variation for the 
month of October in terms of its precipitation and runoff 
values.

As shown in Figure 28, January has seen a slow upgrade 
in precipitation and runoff values from 2015 to 2017, but there 
is an abrupt change in January 2018. This month received 
more rainfall when compared to January 2017. There is a 
correlation between January 2018 and January 2021.

Table 4 shows the complete precipitation and runoff 
analysis for January from 2015 to 2021. Since 2018, every 
year has received more precipitation and higher runoff 
values than the previous years. The January of 2021 received 
the highest rainfall (12 mm); there was very little rainfall in 
December 2021 compared to previous years. It shows that 
there are more variations in the rainfall rate every year and 
that slow developments in climate change are happening in 
Andhra Pradesh.

Figure 26: As shown in Table 3, there are abrupt changes 
in the precipitation values for the years 2016, 2017, 2018, 
and 2021. December of 2015 has received 18.352 mm; year 
2016 has received more precipitation, 34.78 mm, which is 
16.428 mm higher than 2015. December 2017 received a very 
low precipitation value of 8.932, which is less precipitation 
than the previous years. December 2018 received more 
precipitation than all of the year’s December months 
combined. The years 2019 to 2021 received some variations. 

There will be no correlation in the precipitation values 
among the years as shown in Figure 27.

Figure 26. Three-month analysis for the months September – 
November

Figure 27. Analysis for the month of December (2015-2021)

Figure 28. Analysis for January (2015-2021)

Year Precipitation Runoff

Dec-21 12.456 1.044

Dec-20 30.623 12.288

Dec-19 24.722 10.084

Dec-18 49.914 6.22

Dec-17 8.932 1.006

Dec-16 34.78 12.625

Dec-15 18.352 8.434

Year Precipitation Runoff

Jan-21 12.508 1.008

Jan-20 7.1 0.106

Jan-19 5.888 0.082

Jan-18 10.567 0.189

Jan-17 2.094 0.02

Jan-16 2.121 0.021

Jan-15 1.963 0.016
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For a comparison study, the data shown in the Table 5 is 
taken from the metrological department and the Ministry of 
Earth Sciences in India. The metrological department only 
has district-level data for Andhra Pradesh, but our research 
paper considered the entire state for the study. The total 
value of all the districts of Andhra Pradesh is compared with 

our result. As per the metrology department, 2020 received 
a rainfall of 1247 mm. the current research work estimated 
a rainfall of 1276.32 mm in the state of Andhra Pradesh 
for 2020. The accuracy of 97.72 percent is produced by our 
proposed model.

Table 5. Observed Values of Rainfall for the Year 2020 from the Metrological Department

Observed Rainfall values for the year 2020

District Jan 
R/F

Feb
R/F

March
R/F

April
R/F

May
R/F

June
R/F

July
R/F

Aug
R/F

Sep
R/F

Oct
R/F

Nov
R/F

Dec
R/F

Anantapur 0.3 0 4.1 30.5 26.9 123.4 187.1 58.7 255.9 117.3 53.5 22.5

Chittoor 14.6 0 9.5 54.4 21.2 109.8 311.3 135.6 194.7 162.7 299.7 106.7

cuddapa 3.9 0 6.9 30 16.4 103.3 189.8 178.1 372.5 143.5 268.3 65.9

East Godavari 5.9 4.8 3.4 43.6 15.9 112.5 309.5 309.3 238.9 312.1 108.7 0.1

Guntur 17.6 11.9 10.4 6 11.7 143.6 286.5 168.5 251.6 185 118.6 0.2

krishna 10.6 21.8 8.9 31.3 3.8 126.7 302.4 186.8 231.2 293.5 142.5 0.6

kurnool 0 0 6.3 18.8 38.1 140.2 273.9 132.5 279.2 146.2 44.9 3.8

Nellore 50 0.4 5.5 60 6.3 98.2 162 130.3 164.8 99.6 522.3 180.3

prakasam 24.1 2.8 20.8 22.5 12.1 83.1 128.6 93.4 249.3 109.6 212 2.3

srikakulam 6.6 35.2 55.3 57.5 35.5 137.7 137 132.8 151 253.2 51.7 0.4

visakapattinam 8.4 24.3 49.4 84.6 47.5 128.4 167.4 137.5 163.3 281.4 82.3 0

vizianagaram 6.8 33 47.3 82.7 45.5 171.5 191.3 114.8 199.4 246.1 53.2 0

West Gadawari 14.3 4.5 0.6 33.6 5.4 139.4 379.9 293.1 278 286.6 117 0

Average 12.546 10.669 17.569 42.73 22.0 124.5 232.82 159.3 233.1 202.8 159.6 29.45

Total Precipitation 1247

6. Conclusions and Future Scope

Declarations:

The rainfall in the state of Andra Pradesh has been 
studied for the period 2015-2021.The estimated result using 
the SCS-CN method and using the datasets of MCD12Q1 
version 6.1 for land cover types, OpenLandMap Soil 
Texture Class for classifying the soil texture groups, and 
Climate Hazards Group Infrared Precipitation with Station 
Data was presented.  Due to global warming and climate 
change, there are more variations in the rainfall every year. 
Among the study undertaken from 2015 to 2021, the year 
2020 received more rainfall 1276.32 mm and the year 2015 
received less rainfall 591.33 mm. There are more variations 
between the years 2019 and 2020; the difference value is 464 
mm. The years 2018 and 2020 have a correlation in terms of 
their precipitation, and the years 2015, 2017, and 2019 have 
a correlation in terms of their precipitation. The month of 
January has seen a slow upgrade in precipitation and runoff 
values from 2015 to 2017, but there is an abrupt change in the 
month of January 2018. January 2017 received 2.094 mm of 
rainfall, but January 2018 has received 10.567 mm, which 
is 5 times higher than the 2017 rainfall. The January month 
of the year 2021 received the highest rainfall (12 mm); there 
was very little rainfall in the month of December 2021 when 
compared to previous years. Due to lacking of existing data, 
our research work is compared only for the year 2020.  

In the future, more existing data will be collected, and a 
detailed comparative study will be done. Other algorithms 
will be integrated with our proposed model to estimate 
rainfall runoff, and a new algorithm will be developed for 
rainfall prediction.
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