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Abstract

1. Introduction

According to Bren d’Amour et al. (2016) findings, global 
urbanization by 2030 will cause arable land losses of 1.8 
to 2.5%, with Africa and Asia accounting for 80% of this 
loss.  Given that more than 60% of the world’s irrigation 
fields are near urban areas, there is potential competition 
for land between agriculture and urbanization (Mohammad, 
2020).  By 2050, more than 68% of the world’s population, 
approximately 9.8 billion people, will reside in cities, with 
the majority residing in less-developed countries (Li et al., 
2013; United Nations, 2020).  This demographic shift will 
impose considerable pressure on resource consumption, 
especially in terms of land-use changes (Alqahtany et al., 
2013), potentially leading to uncontrolled urban sprawl 
(Osman et al., 2018) and significant alterations in the urban-
regional landscape (Xu et al., 2012).

The rapid urbanization and growth rate in Kano, 
Nigeria, pose substantial challenges to urban environmental 
sustainability.  Kano’s urbanization has made it Nigeria’s 
most populous northern urban state (Okopi, 2021). 
Urbanization attracts populations, shapes activities, and 
drives infrastructure development, including road networks, 
public utilities, and land-use changes (Mohammad, 2020), 
leading to expanded built-up areas, diminished green spaces, 
increased urban surface temperatures, urban heat island 
formation, and climate change (Singh et al., 2017; Wang, 

2019; Huang et al., 2019; Rigden and Li, 2017; Li et al., 2018; 
Liang et al., 2019; Fabolude and Aighewi, 2022; Amaechi et 
al., 2023, Okoduwa et al., 2024).

Analyzing land-use changes across past, present, and 
future scenarios allows for assessing resource expansion 
and degradation, guiding current and prospective land-use 
decisions (Mohammad, 2020). Furthermore, understanding 
the impact of urban development informs the adoption 
of efficient land management policies and strategies 
(Nourqolipour et al., 2016; Munthali et al., 2019). Addressing 
urban challenges requires enhancing urban land-use 
efficiency for sustainable development (Zhu et al., 2019) and 
analysing the root causes of uncontrolled urban growth for 
improved future planning (Osman, 2018).

Modelling LULC changes offers an effective way to 
simulate land-use dynamics and understand interactions 
between LULC changes and the environment (Lia et al., 
2016; Tobore et al., 2021). Various methods exist for modeling 
LULC changes, including Cellular Automata (CA) (He et al., 
2005), Clue-s model (Verburg and Overmars, 2007), Markov 
model (Guan et al., 2008), and the hybrid CA-Markov model 
(Khawaldah, 2016). The Markov model is widely used 
for simulating and predicting LULC changes, indicating 
change directions and providing a framework for assessing 
future land-use demands (Jiansheng et al., 2012). However, 
traditional models often lack spatial analysis capabilities and 
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Uncontrolled urban development has significant implications for sustainable urban progress. Assessing and predicting 
changes in land use/land cover (LULC) are essential for effective environmental monitoring and management.  This study 
evaluates LULC changes from 1984 - 2023 in the Kano metropolis, Nigeria, while also forecasting future transformations.  
Landsat-5 Thematic Mapper (1984), Landsat-4 Thematic Mapper (1998), and Landsat-8 Operational Land Imager/Thermal 
Infrared Sensor (2023) imagery from the United States Geological Survey Earth Explorer were used.  LULC classification 
was conducted using the support vector machine (SVM) supervised approach, categorizing the landscape into built-up areas, 
vegetation, water bodies, and bare land.  The accuracy of the classified LULC maps was computed using ENVI 5.3, ArcGIS, 
and Google Earth Pro.  The CA-Markov model in IDRISI TerrSet Software (2020) was employed to project LULC changes 
for 2050.  The classification accuracies for 1984, 1998, and 2023 were 99.59%, 94%, and 98.96%, respectively, with kappa 
coefficients of 0.99, 0.92, and 0.98.  The results indicate a 41.8% increase (204.63 km²) in built-up areas from 1984 - 2023, 
while vegetation expanded by 2% (8.55 km²).  Water bodies slightly decreased by 0.12 km² (<1%), and bare land declined 
by 213.35 km² (43%).  Projections for 2050 anticipate further expansion of built-up areas (16%) alongside reductions in 
vegetation (1%), water bodies (<1%), and bare land (16%).  These findings suggest continued urban growth at the expense of 
natural landscapes.  To enhance environmental sustainability, this study recommends ecosystem-based adaptation strategies 
and legal frameworks to mitigate the adverse effects of urban expansion.
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struggle to predict land requirements within geographical 
space (Han et al., 2015). In contrast, the CA-Markov model 
offers robust dynamic simulation capabilities, effectively 
representing spatial and temporal changes  by combining the 
strengths of both the Markov and CA models (Yuan et al., 
2015).

By integrating the spatial continuity of the cellular 
automata (CA) model with the Markov chain’s long-term 
prediction abilities, the CA-Markov hybrid model has proven 
effective for modeling various LULC classes (Chotchaiwong 
and Wijitkosum, 2019).  This hybrid approach offers a 
dynamic, reliable, and robust technique for predicting 
spatiotemporal LULC changes in rapidly developing urban 
areas.  Several studies (Liping et al., 2018; Wang et al., 
2018; Sun et al., 2018; Samat et al., 2020; Wang et al., 2022; 
Fabolude and Aighewi, 2022; and Amaechi et al., 2023) have 
demonstrated the effectiveness of the CA-Markov model 
in predicting LULC change.  Using this hybrid model as a 
predictive tool can significantly contribute to effective land 
use planning, management, and ecological system restoration 
(Koko et al., 2022).

This study addresses the critical gap in understanding 
the long-term impact of urbanization on LULC dynamics 
in Kano Metropolis. While previous research has examined 
urban growth in Nigeria, limited studies have provided a 

spatiotemporal assessment covering nearly four decades 
(1984–2023). Additionally, the lack of predictive models 
for future urban expansion has hindered proactive urban 
planning. By employing the CA-Markov model, this study 
projects LULC changes for 2050, offering a data-driven 
approach to inform sustainable land management policies. 
The findings contribute to knowledge by providing 
evidence of urban expansion trends, their implications for 
environmental sustainability, and the need for adaptive urban 
planning strategies in rapidly growing cities like Kano.

abundance of fertile soil that supports a variety of food and 
cash crops, including millet, rice, sorghum, wheat, cowpeas, 
groundnuts, and other vegetables (Koko et al., 2022). The 
metropolis is one of Nigeria’s fastest-growing urban areas, 
and its commercial and agricultural activities have continued 
to attract new residents (Okopi, 2021).

The city has a wet season that lasts from May to October, 
followed by a dry season from November to April (Dankani, 
2013).  The annual precipitation in Kano varies between its 
northern and southern regions, from 800 mm to 1100 mm 
(Nabegu, 2014).  The city’s average yearly temperature 
is approximately 26°C (Nwagbara, 2015).  Kano has an 
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 Figure 1. Study area (Kano Metropolis) displayed using a False Color Composite with Landsat 8 bands 5 (Near Infrared), 4 (Red), and 3 
(Green) to enhance land cover distinction.

2.  Materials and methods
2.1.  Study area

Kano Metropolis (Figure 1) is located between latitudes 
11°51’0’N and 12°01’30’N and longitudes 8°25’0’E to 
8°30’0’E.  It is located in northern Nigeria’s most populous 
state, and the study area is Nigeria’s second most populous 
metropolis (Koko et al., 2022).  The city’s urban population 
was 3.8 million in 2018, and it is predicted to grow to 5.6 
million by 2030 (Koko et al., 2022).  Kano’s urban structure 
has evolved, with significant transformations driven by 
industrialization and economic development in the 21st 
century. The city’s urban fabric has gradually been shaped 
by rapid urban expansion, extending from the central and 
densely settled zones to the peripheral and surrounding areas 
of the urban center (Mohammed et al., 2014).
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 Figure 2. Research methodology flowchart for LULC classification 
and projection

2.2 Data Acquisition

2.4 Image Classification

2.5 Accuracy Assessment

2.3 Image Preprocessing

This study utilized Landsat 5 Thematic Mapper 
(TM), Landsat 4 Thematic Mapper (TM), and Landsat 8 
Operational Land Imager/Thermal Infrared Sensor (OLI/
TIRS) data for path and row 188/054 from 1984, 1998, 
and 2023 (Table 1). These images were obtained from the 
United States Geological Survey (USGS) website (https://
earthexplorer.usgs.gov/).  To ensure data quality and enhance 
the reliability of the analyses, only images with 0.00% cloud 
cover were selected.

ENVI software version 5.3 was utilized for LULC 
classification of the 1984 and 2023 images, while ArcGIS 
10.7.1 was used for the 1998 image. A limitation of the 
cracked version of ENVI is the lack of support for Landsat 
4 data processing. Consequently, ArcGIS was selected 

The accuracy assessment of the classified LULC maps 
was conducted using different methodologies, reflecting the 
software used for classification.  ENVI 5.3 was utilized for 

To ensure the accuracy and reliability of the classification 
results, preprocessing was performed on the Landsat 
images before classification. ENVI (Environment for 
Visualizing Images) software version 5.3 was used for image 
preprocessing, which included radiometric calibration, 
atmospheric correction, geometric correction, and clipping 
of the study area.

Radiometric Calibration: This step converted the digital 
numbers (DN) of the Landsat images into at-sensor radiance 
values, correcting for sensor-specific variations and ensuring 
consistency across different acquisition years.

Atmospheric Correction: Atmospheric correction 
was performed using the Fast Line-of-Sight Atmospheric 
Analysis of Spectral Hypercubes (FLAASH) tool in ENVI 
5.3. FLAASH removes the effects of atmospheric scattering 
and absorption, thereby enhancing the spectral fidelity 
of the images and improving the accuracy of land cover 
classification.

Geometric Correction: The images were georeferenced 
to the Universal Transverse Mercator (UTM) coordinate 
system using the World Geodetic System (WGS) 1984 
datum to ensure spatial alignment across different years.  
This correction minimizes geometric distortions caused by 
variations in satellite positioning and terrain effects.

Clipping of the Study Area: To focus on the region of 
interest, each Landsat image was clipped to the boundaries 
of Kano Metropolis using a shapefile of the study area.  
This step eliminated unnecessary data outside the study 
area, reducing processing time and improving classification 
accuracy.  These preprocessing steps were essential for 
ensuring data consistency, reducing atmospheric and 
radiometric distortions, and enhancing the accuracy of 
subsequent classification and analysis.

to effectively process and classify the 1998 image while 
maintaining overall methodological consistency. Despite 
the use of different software, classification consistency 
was ensured by applying the same supervised classification 
approach and validation techniques across all datasets. The 
same algorithm (SVM) was used to classify all land cover 
classes.

Implementing this technique on Landsat images included 
utilizing four distinct classes: built-up (impervious surface 
area including building materials and asphalt), vegetation 
(areas dominated by trees and grasses), waterbody (area 
covered by water), and bare land (non-vegetated barren areas) 
(Okoduwa and Amaechi, 2024). These land cover classes 
were selected for this study based on the observed land cover 
classes available within the Landsat images through false 
and true color composites.  The supervised classification 
process involved the use of meticulously collected training 
signature samples. The CA-Markov model in TerrSet 
Geospatial Monitoring and Modelling Software version 2020 
was utilized to carry out LULC projections for 2050. ArcGIS 
10.7.1 was used to mask the boundaries of the study area, 
perform post-classification operations, generate statistical 
data, develop map layouts, and create visualizations. Figure 
2 depicts the research methodology flowchart.

The selection of Landsat 5 for 1984 and Landsat 4 for 
1998 was based on image availability with 0.00% cloud 
cover.  While both satellites carried the TM sensor, Landsat 
5 was chosen for 1984 because it provided a cloud-free 
image for that year.  For 1998, the cloud-free image available 
came from Landsat 4, making it the most suitable option for 
maintaining consistency in data quality.  Thus, the choice of 
data sources was guided by the need to ensure the highest 
quality cloud-free imagery for analysis.

Data Source Resolution Land/Scene Cloud Cover Date

Landsat 5 TM USGS Earth Explorer 30 0.00 1984-12-29

Landsat 4 TM USGS Earth Explorer 30 0.00 1998-11-18

Landsat 8 OLI/TIRS USGS Earth Explorer 30 0.00 2023-12-09

Table 1. Data type and data sources



 Figure 3. Google Earth Pro showing 1998 image for accuracy 
assessment.
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the accuracy assessment of the 1984 and 2023 images, while 
ArcGIS and Google Earth Pro were used for the 1998 image. 
This approach was necessary to maintain methodological 
consistency, as ENVI was used for classifying the 1984 and 
2023 images, whereas ArcGIS was used for the classification 
of the 1998 image. Additionally, Google Earth Pro provided 
access to historical high-resolution imagery, which enhanced 
the validation process for 1998.

In ENVI 5.3, accuracy assessment was performed 
through a two-step process.  First, various band combinations 
were used to extract ground truth pixels from high-resolution 
raster images (unclassified rasters) for 1984 and 2023, 
representing distinct land cover classes.  Next, the polygon 
tool was employed to extract corresponding ground truth 
pixels from the classified maps for these years.  The Ground 
Truth ROI function in ENVI 5.3 was then used to generate a 
confusion matrix, comparing the classified land cover pixels 
with the reference ground truth data.  The results, including 
the number of correctly and incorrectly classified pixels, are 
presented in Tables 2 and 4.

For the 1998 image, an accuracy assessment was 
conducted using ArcGIS and Google Earth Pro. A total of 
100 accuracy assessment points were generated in ArcGIS 
using the Create Accuracy Assessment Points tool, with 
the equalized stratified random sampling method ensuring 
balanced distribution across all LULC classes. The generated 

The various accuracy assessments can be calculated 
using the following formulas:

(Nasiri et al., 2022; Kadri et al., 2023, Okoduwa & 
Amaechi, 2024)

points were then converted to KML format and imported 
into Google Earth Pro, where the Show Historical Imagery 
feature was used to retrieve corresponding 1998 satellite 
imagery (Figure 3). Each assessment point was visually 
cross-referenced with the historical imagery to verify 
classification accuracy.

Following validation, a confusion matrix was computed 
in ArcGIS to assess classification performance. The overall 
accuracy, ‘user’s accuracy (UA), ‘producer’s accuracy (PA), 
and Kappa coefficient (KC) were then derived to quantify 
classification reliability, as presented in Equation 1-4. Table 
3 shows the numbers of correct and incorrect ground truth 
points for 1998.

Table 2. Correct and incorrect numbers of ground truth pixels for 1984

Table 3. Correct and incorrect numbers of ground truth points for 1998

Table 4. Correct and incorrect numbers of ground truth pixels for 2023

LULC Class Built-up Vegetation Waterbody Bareland Total

Built-up 1418 0 12 4 1434

Vegetation 1 286 5 2 294

Water bodies 1 0 97 0 98

Bareland 2 6 4 7105 7117

Total 1422 292 118 7111 8943

LULC Class Built-up Vegetation Water bodies    Bare land Total

Built-up 1 22 0 2 25

Vegetation 22 0 0 3 25

Water bodies 0 0 25 0 25

Bare land 0 0 0 25 25

Total 23 22 25 30 100

LULC Class Built-up Vegetation Waterbody Bareland Total

Built-up 5900 1 40 7 5948

Vegetation 0 282 0 3 285

Water bodies 0 0 321 0 321

Bareland 22 15 2 2063 2102

Total 5922 298 363 2073 8656



3.  Results
3.1 Accuracy Assessment

3.2 Spatial distribution of LULC

Table 5 presents the classification accuracy for 1984, 
1998, and 2023.  The overall accuracies for the three years 
(1984, 1998, and 2023) were 99.59%, 94, and 98.96%, 
respectively.  The kappa coefficients were 0.99, 0.92, and 
0.98, respectively, which are considered acceptable (Tadese 
et al., 2020; Koko et al., 2022; Amaechi et al., 2024).

pressure on available land resources, necessitating effective 
land-use policies to balance development with environmental 
conservation.  In contrast, water bodies are projected to 
remain relatively stable, with a minimal decrease of 0.06 
km².  While this suggests that urban expansion may have a 
limited direct impact on water bodies, indirect effects such as 
pollution and increased water demand could pose challenges 
for water resource management in the long term.

The findings of the geospatial evaluation for the year 
1984 (Figure 4) demonstrate a landscape that has yet to 
experience significant change from anthropogenic activities, 
as evidenced by the quantity of vegetation in the Fagge local 
government area. The built-up class was concentrated in 
Nassarawa and the southern part of Ungogo. Tarauni, Kano, 
Gwale, Dala, and Kumbotso were covered with bare land. 
The assessment results for the year 1998 (Figure 5) show that 
built-up area is gradually increasing, and bare land and water 
bodies are being lost within Fagge, Ungogo, and Nassarawa.  
Increased patches of vegetation were found in Tarauni.

The assessment results for the year 2023 (Figure 6) show 
that vegetation and bare land are gradually being lost over 
time and replaced with built-up areas within Fagge, Tarauni, 
Ungogo, Kano, Gwale, Dala, and Kumbotso. Some patches of 
vegetation were also found across the eight local government 
areas (LGAs). The projected year (Figure 7) reveals a massive 
built-up area within all the respective local government areas 
of the Kano metropolis.  Some patches of vegetation are still 
projected to occur within the six LGAs. By 2050, the built-
up area is expected to increase by approximately 82.89 km², 
representing a 16% growth from 2023 levels. This continued 
urban expansion suggests that previously undeveloped 
land will be converted to residential, commercial, and 
industrial uses, reflecting population growth and economic 
development pressures. Expanding urban areas could have 
profound implications for environmental sustainability, 
including increased land surface temperature, heightened 
pollution levels, and greater demand for infrastructure and 
public services.

Vegetation cover, on the other hand, is projected to 
decline by 4.7 km² (1%), indicating the ongoing loss of 
green spaces due to urban encroachment.  This reduction in 
vegetation could lead to adverse ecological consequences, 
such as decreased air quality, disruption of local climate 
regulation, and the exacerbation of the urban heat island 
effect.  Similarly, bare land is expected to decrease by 78.13 
km² (16%) as more open spaces are converted to built-up 
areas. The rapid decline in bare land signifies the increasing 

Class
 

1984 1991 2023

PA UA PA UA PA UA

Build-up 99.72 98.88 0.96 0.88 99.63 99.19

Vegetation 97.95 97.28 100 0.88 94.63 98.95

Water bodies 82.20 98.98 100 100 88.43 100

Bareland 99.92 99.83 0.83 100 99.52 98.14

Overall Accuracy 99.59 94 98.96

Koppa Coefficient 0.99 0.92 0.98

Table 5. Accuracy assessment results for 1984, 1991, and 2023

 Figure 4. LULC map of 1984

 Figure 5. LULC map of 1998

 Figure 6. LULC map of 2023

 Figure 7. LULC map of 2050
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3.3 LULC statistics

3.4 LULC Net change

3.5 Transition Probability Matrix

In 1984, the study area comprised 25.43 km² (7.2%) of 
built-up land, 20.46 km² (4%) of vegetation, 1.81 km² (0.4%) 
of water bodies, and 435.81 km² (88%) of bare land.  By 1998, 
built-up land had increased to 53 km² (10.7%), vegetation 
expanded to 40 km² (8.1%), while water bodies and bare land 
covered 0.35 km² (0.1%) and 400 km² (81.1%), respectively.  
By 2023, the built-up area had significantly expanded to 
240.06 km² (49%), while vegetation decreased to 29.01 km² 
(6%). Water bodies remained relatively stable at 0.94 km² 
(0.4%), whereas bare land declined to 222.46 km² (45%) 
(Table 6).

Table 7 presents comprehensive LULC change statistics 
from 1984 - 2023 and projections from 2023-2050.  The 
results indicate that between 1984 and 2023, the built-up area 
increased by 204.63 km² (41.8%). Vegetation expanded by 
8.55 km² (2%). Water bodies experienced a slight decrease 
of 0.12 km² (0%), while bare land decreased by 43%.  For the 
period from 2023 to 2050, the built-up area is projected to 
increase by 82.89 km² (16%), the vegetation area is projected 
to decrease by 4.7 km² (1%), the water body area is projected 
to decrease by 0.06 km² (0%), and the bare land area is 
projected to decrease by 78.13 km² (16%).

Figures 8 and 9 depict the change dynamics of various 
LULC classes over different periods.  For 1984-2023, the 
LULC classes that increased included built-up areas (BU) 
and vegetation (V).  From 2023-2050, BU will continue 
to increase, while bare land (BL), water bodies (WB), and 
vegetation (V) will decrease.

The transition probability matrix (Table 8) illustrates 
the probability of a specific LULC class transitioning into 
another land use class. The analysis highlights the built-up 
areas of the Kano metropolis as the most stable land cover 
class, with transition probabilities of approximately 0.98.  
This finding suggests a minimal likelihood of the city’s 
built-up areas transitioning into other LULC categories. 
Vegetation showed a transition probability of approximately 
0.52 for transforming into built-up areas, while water bodies 
and bare land had transition probabilities of roughly 0.32 for 
transforming into built-up areas.  The analysis (Figure 10) 
identified bare land and vegetation as the primary LULC 
classes contributing to the expansion of built-up areas.

Using classified LULC maps of the Kano metropolis 
from 1984 to 2023, the city’s land use was projected for 
2050. According to the projections, by 2050, Kano’s built-
up areas are expected to cover approximately 322.95 km2, 
representing 65% of the city’s total landmass.  Vegetation 
areas are projected to cover approximately 24.31 km2, 
accounting for 5% of the city’s total landmass. Water bodies 
are projected to cover approximately 1.88 km2, making up 
0.4% of the city’s total landmass. Finally, bare land areas are 
projected to cover approximately 144.33 km2, representing 
29% of the city’s total landmass.  (Table 6).

Table 6. LULC statistics for 1984, 1998, 2023, and 2050

Table 7. LULC net change statistics

Table 8. Transition Probability Matrix (1984 – 2023)

 Figure 8. Net change from 1984 – 2023

 Figure 10. LULC classes contributing to changes in built-up areas.

 Figure 9. Net change from 2023 - 2050

LULC Class
1984 1998 2023 2050

Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%)

Built-up 35.43 7.2 53 10.7 240.06 49 322.95 65

Vegetation 20.46 4   40 8.1 29.01 6 24.31 5

Water bodies 1.81 0.4  0.35 0.1 1.94 0.4 1.88 0.4

Bareland 435.81 88  400 81.1 222.46 45 144.33 29

TOTAL 493.5 100  493.5 100 493.5 100 493.5 100

LULC Class
1984 - 2023 2023 - 2050

Area (Km2) Area (%) Area (Km2) Area (%)

Built-up 204.63 41.8 82.89 16

Vegetation 8.55 2 -4.7 -1

Water bodies 0.13 0 -0.06 0

Bareland -213.35 -43 -78.13 -16

Built-up Vegetation Water bodies Bareland

Built-up 0.9825 0.0058 0.0052 0.0065

Vegetation 0.5213 0.4336 0.0017 0.0434

Water bodies 0.3199 0.0373 0.3017 0.0188

Bareland 0.3199 0.0459 0.0027 0.6316
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4.  Discussion

5.  Conclusions and recommendations

This research reveals that the built-up area will continue 
to increase at the expense of bare land and vegetation.  
This finding aligns with the work of Koko et al. (2022), 
who reported urban growth in the Kano metropolis from 
1991 to 2020 at the expense of bare land and vegetation.  
The rapid urban development of Kano could be attributed 
to the continuous in-migration of a large population to the 
city due to various pull factors, including but not limited to 
suitable farmlands, better business and job opportunities, 
better urban infrastructure, and healthcare facilities (Koko 
et al., 2023).  Population growth contributes significantly 
to urban congestion and transforms other land classes into 
built-up areas (Hussain et al., 2022). The transformation of 
bare land to built-up areas in the Kano metropolis aligns 
with a recent study in Delhi that indicated a rapid increase 
in built-up areas at the expense of bare land (Chaudhuri et 
al., 2022).  A study conducted by Koko et al. (2020) in Zaria 
and Amaechi et al. (2023) in Abuja, Nigeria, showed that as 
a result of urbanization and deforestation, these patterns of 
barren land and vegetation cover turning into built-up areas 
will persist until 2050.  Another study conducted in Bathinda 
by Rani et al. (2023) suggested that barren land is anticipated 
to decrease by 2050.

From 1984 to 2023, there was an increase in vegetation 
cover within the study area.  This increase in vegetation 
could be linked to various Fadama programs (Sulaiman et al., 
2021) and government efforts to achieve all-season farming 
(Koko et al., 2023).  A similar increase in vegetation from 
1990–2020 was observed in the Zaria metropolis and Abuja 
Municipal Area Council from 1987–2023 due to afforestation 
schemes (Koko et al., 2020; Okoduwa et al., 2023).  However, 
the projected results indicate that vegetation will decrease 
from 2023 to 2050.  This decrease in vegetation can be 
attributed to continuous urbanization and infrastructure 
development (Amaechi et al., 2023).

Increasing built-up areas at the expense of vegetation 
cover could jeopardize ecosystem health, human well-being, 
and food security (Rahman, 2016; Khanal et al., 2019). Gogoi 
et al. (2019) reported that an increased population could result 
in increased pollution, leading to detrimental consequences, 
including urban heat waves and health problems (Hansen et 
al., 2013; Wang et al., 2021).  Okoduwa et al. (2023) confirmed 
that the increase or decrease in temperature changes was 
linked to the amount of vegetation cover in cities.  It is 
generally proven that the loss of forest and vegetative cover 
degrades ecosystem services by reducing water retention, 
drying up water sources, decreasing biodiversity, reducing 
the sequestration rate of carbon dioxide (CO2), and enhancing 
the magnitude and frequency of disasters such as flooding 
(Bradshaw et al., 2007), which are vital for human well-
being (Bewket, 2002).

Urbanization poses challenges to environmental 
sustainability (Keshtkar et al., 2017; Rijal et al., 2018), as 
urban expansion often comes at the expense of biodiversity 
and ecosystem services (Poppenborg and Koellner, 2013; 
Tao et al., 2015).  With urban development, there is a high 
demand for natural resources (Balatsky et al., 2015), food, 

To design future policies and plans for healthy urban 
development, it is vital to understand how LULC has evolved 
in the past, present, and future. The findings of this study 
will help policymakers, environmental managers, and 
individuals improve environmental management methods 
in the Kano metropolis. To protect vegetation, this study 
advises the development and implementation of ecosystem-
based adaptation strategies and other legal frameworks. Such 
initiatives should concentrate on planting trees in urban areas 
such as parking lots, between buildings, in backyards, and 
along roadways. These steps will considerably protect soil 
from erosion, support biodiversity, and manage temperature 
and pollution. To prevent any irreparable effects that changes 
in LULC may have on the environment in the near future, we 
urge environmental managers to make use of the conclusions 
and suggestions of this study.

and fibre production (Tilman et al., 2011). Consequently, 
ecosystems face unprecedented pressure, potentially 
leading to degradation and conversion, thereby affecting 
the provisioning of ecosystem services for both current 
and future generations (Rimal et al., 2019). The increase in 
built-up areas due to urbanization can exacerbate runoff by 
limiting the areas where floodwaters can flow, as a large part 
of urban environments are covered with tarred roads and 
pavement (Mukhtar et al., 2022).

A balance between urban development and the 
conservation of natural resources is crucial for sustainable 
urban development (Koko et al., 2022).  Implementing 
strategies such as open green spaces, green infrastructure, 
water conservation techniques, and various afforestation 
initiatives is essential for promoting public health and 
environmental sustainability in urban areas (Okoduwa 
et al., 2023).  These interventions play a critical role in 
mitigating soil erosion, preventing land degradation, 
minimizing environmental pollution, and regulating surface 
temperatures (Tsegaye, 2019; Asuquo et al., 2022). Another 
way to promote urban sustainability is through developing 
and implementing a land-use plan (Qingsong He, 2023) that 
prioritizes sustainable development and protects ecologically 
valuable areas such as green spaces to mitigate urban heat 
islands and floods.
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